Anaerobes

Clues Suggestive of Anaerobic Infections

- <u>There are many clues that can be suggestive of</u> an anaerobic infection such as:
 - Foul odors
 - Black discoloration of specimens or colonies
 - Inability to grow organisms seen in Gram stain
 - Unique morphologies seen on direct smear Gram stain
 - Fusiform GNB
 - Large spore-forming GPB
 - Branching GPB

Additional characteristics are listed in Table 24-2

Specimen Types

- Anaerobes can be isolated from a number of different specimen types that include:
 - Aspirates
 - Body fluids
 - Lower respiratory
 - BAL and BW only
 - Abscesses
 - Tissues
 - Deep wounds
 - Urine
 - Suprapubic and cystos only
 - Genital sources
 - Intrauterine and vaginal abscesses only

Specimen Processing

Primary Media includes:

- CDC-Anaerobe Sheep Blood Agar
- Laked KV
 - Kanamycin to inhibit growth of Gram-negative facultative anaerobic bacilli
 - Vancomycin to inhibit growth of Gram-positive organisms
 - Contains Vitamin K and Hemin to aid in the growth of Bacteroides spp. and Prevotella sp.
- CDC-CNA
 - Colistin and Nalidixic acid: inhibits facultative GNBs

Anaerobic Conditions

- Anaerobic environments can be generated through various systems that include:
 - Gas-impermeable bags, containers or jars
 - Anaerobic environment is achieved through chemical reactions within a gas pack
 - Anaerobic chamber
 - Environment is maintained by gas-tank delivery system and the use of a palladium catalyst
 - Hydrogen from the gas mixture combines with oxygen to form water in the presence of the catalyst
 - -Oxygen indicator is required

Anaerobic Culture Environment

Atmosphere:

 Nitrogen: 80-90%
 Hydrogen: 5-10%
 CO₂: 5-10%

H2 + O2----→H20 palladium catalyst

Anaerobic Systems

GasPak Jar Anaerobic Chamber

Anaerobic Environment Indicator System

- Indicator systems include:
 - Resazurin
 - **PINK** when O2 is present
 - WHITE/COLORLESS when O2 is not present
 - Other indicator systems
 - Methylene Blue
 - -BLUE when O2 is present

- -**WHITE/COLORLESS** when O2 is not present
- –Up to 2 hours may be required to establish appropriate anaerobic conditions

Important tests used on the ANA bench

- Aero-tolerant test (radials)
- Gram Stain
- Location of spores if present (terminal, subterminal, central)
- Potency antimicrobial disks (vankomycin,kanamycin,colistin)
- Egg yolk agar (lecithinase and/or lipase)
- Bacteroides Bile Esculin agar (BBE)
- Double zone hemolysis
- Beta lactamase
- Rapid ANA system (4 hrs ID system)

Gram Stain of Aspirate Material

Table 28-1.	Characteristics of	anaerobes	based on	Gram stain morphology
-------------	--------------------	-----------	----------	-----------------------

Organism	Gram stain reaction and morphology				
Actinomyces spp.	Branching gram-positive bacilli				
Clostridium perfringens	Large gram-positive bacilli with blunt ends ("boxcar-shaped"), no spores				
Clostridium tetani	Gram-positive bacilli with round or oval terminal spore ("drumstick" or "tennis racket" shaped)				
Propionibacterium spp.	Small, thin pleomorphic gram-positive bacilli				
Bacteroides, Porphyromonas,	Faintly staining gram-negative coccobacilli				
or Prevotella spp.					
Fusobacterium nucleatum	Thin, gram-negative bacilli with tapered ends				
Fusobacterium necrophorum	Extremely pleomorphic, thin gram-negative bacilli with bizarre shapes				
or F. mortiferium	Anaerobic gram-positive bacilli V				
Veillonella spp.	Tiny gram-negative cocci with a tendency to stain gram variable				

Color Atlas of Medical Microbiology, ASM Press, p203.

Gram Stain Pitfall

 Over decolorization can lead to the false impression of a Gram-Negative organism

 Susceptibility to special potency antimicrobial disks can help preliminarily categorize of the anaerobic pathogen

Potency antimicrobial Disks

- Vancomycin (5 μg)
- Kanamycin (1 mg)
- Colistin (10 µg)
- Gram Positive: Vancomycin S, Colistin R
- Gram Negative: Vancomycin R
 - Exception: *Porphyromonas spp.* Vancomycin S

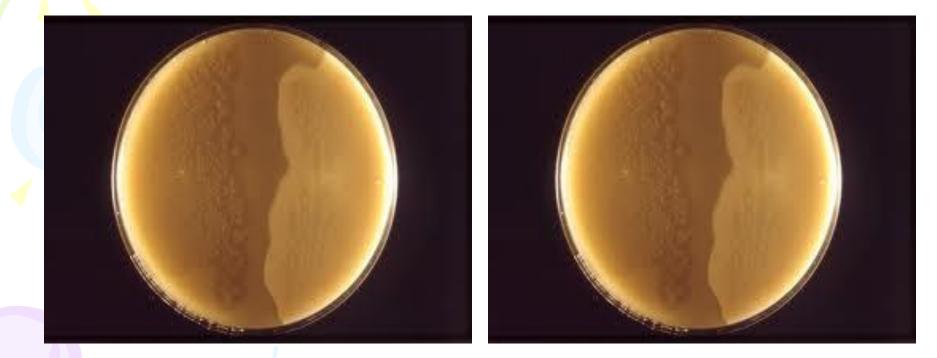
Potency Antimicrobial Disks: Presumptive ID

Table 28-3. Presumptive identification of anaerobes based on special-potency antimicrobial disk results

	Result ^a with disk containing:			
Organism	Kanamycin (1,000 μg)	Vancomycin (5 μg)	Colistin (10 μg)	
Bacteroides fragilis group	muld in R floord o	R R	R	
Bacteroides ureolyticus group	ono ben S dave da	R	S	
Fusobacterium spp.	S S S	mosla a R disaré i	S	
Porphyromonas spp.	doooco o Ringen du	na goune S vitra Mi	R m	
Veillonella spp.	S	R	S	
Peptostreptococcus anaerobius	neget de R ^S lood e	Thin, g 8 m-negative		
Other anaerobic gram-positive cocci	S	S	R	
Anaerobic gram-positive bacilli	V	S ^b	R	

^{*a*} R, resistant; S, susceptible; R^S, resistant, rarely susceptible; V, variable reaction. ^{*b*} Rare Lactobacillus spp. and Clostridium spp. may be vancomycin resistant.

Color Atlas of Medical Microbiology, ASM Press, p204.


Lecithinase (Naegler RX)

- Performed on an egg-yolk agar
- Tests the ability to break down lecithine into diglycerides
- Positive for lecithinase: <u>Produces opaque</u> <u>white clearings</u>
- Performed on suspected Clostridium spp.

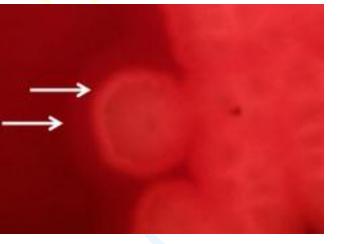
Lecithinase (Naegler RX)

Negative

Positive

Lipase

- Performed on an egg-yolk agar
- Tests the ability to <u>break down fat</u> with the enzyme lipase
- Positive: Production of lipase causes an <u>iridescent oil-on-water effect (oil</u> <u>slick)</u>
- Differentiates Fusobacterium spp.


Lipase (positive)

BBE, Double zone hemolysis, Rapid ANA

BBE (Bacteroides spp.)

Double Zone Hemolysis (Clostridium perfringens)

Rapid ANA (4 hour ID)

Anaerobic, Spore-Forming Gram Positive Bacilli

Clostridium spp.

- Obligate anaerobic GPB, form spores
- Ubiquitous in nature (soil)
- Frequent inhabitants of the GI tract
- Frequently isolated species in humans:
 - *C. perfringens
 - *C. septicum
 - -C. innocuum
 - -C. ramosum
 - *C. difficile

Clostridia spp.

- Wound infections
 - Surgical site
 - Trauma
- Gas Gangrene (*C. perfringens*)
- Abscess (abdominal, lung, organ, brain, oral)
- Septicemia
- Toxin mediated diseases:
 - C. difficile: antibiotic associated diarrhea
 - C. botulinum: botulism; flaccid paralysis
 - *C. tetani*: tetanus; muscle spasm; no relaxation
 - C. perfringens: food poisoning

Figure 28-16 Disk pattern of *Clostridium*. Although some of the clostridia stain gram negative, the disk pattern is consistent with a gram-positive organism and confirms the correct Gram reaction of the isolate. As shown here, clostridia are vancomycin and kanamycin susceptible and colistin resistant. Vancomycin – S Kanamycin – S Colistin - R

Color Atlas of Medical Microbiology, ASM Press, p210.

Spore Location

- Spore location is one of the identifying characteristics used for *Clostridium sp.*
- Location of spores can include:
 - Central
 - Sub-terminal
 - Terminal

C. botulinum

Botulinum toxin - most powerful EXOTOXIN known

- Neurotoxin prevents acetylcholine release from the nerve
 endings producing acute descending, flaccid paralysis
 - Bilateral involvement of Cranial Nerves (face, head, throat), followed by thorax, diaphragm, then extremities
- Death by respiratory failure
- Seven toxin types

Food disease = Ingestion botulism

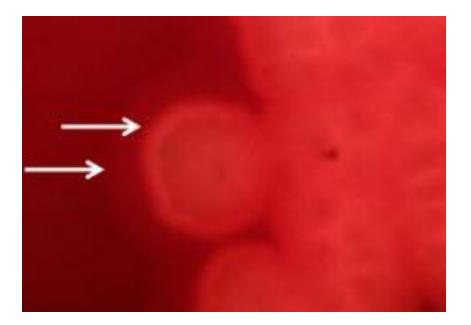
- Improperly preserved canned foods will not
- Spores germinate and secrete botulinum toxin
- Ingestion of the preformed toxin

C. botulinum

- Neonates ingest bacterial spores
- Typical food source is raw honey
- Germinates in neonatal gut
- Same syndrome as intoxication botulism
- Adults are not susceptible to this type of infection
 - Spores will not germinate in adult gut

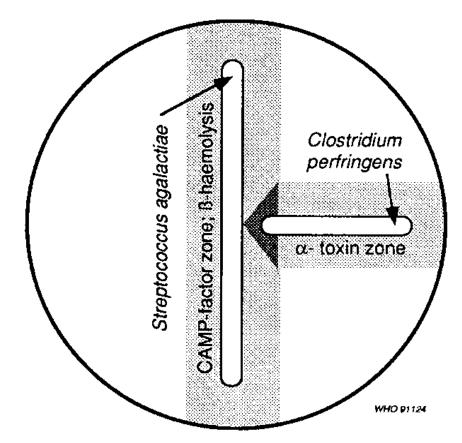
Clostridium botulinum
Key characteristics include:
Lipase: positive
Lecithinase: negative
Sub-terminal spore location

*Diagnosed primarily by:
 —Serological testing
 —Clinical symptoms



Clostridium perfringens

- Associated with gas-gangrene/food poisoning
- Gram positive "boxcar" shaped bacilli
- Key characteristics include:
 - Lecithinase: Positive
 - Lipase: Negative
 - Central or sub-terminal spore location(rarely seen)
 - Double zone of Beta-hemolysis
 - Reverse CAMP test positive


Double Beta-Hemolysis

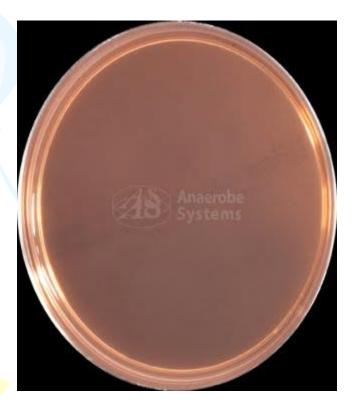
C. perfringens
 produces a
 characteristic
 double zone of
 Beta-hemolysis

Reverse CAMP

- *C. perfringens* produces a positive reverse CAMP test.
 - Group B is streaked as a line down the center on the plate
 - C. perfringens is streaked in a line perpendicular
 - Arrow head clearing is positive

Clostridium difficile

- Implicated in:
- -Antibiotic-associated diarrhea
- Pseudomembranous colitis
- Key characteristics include:
 Lecithinase negative
 Sub-terminal spore location



© 2007 Eisevier Inc.

 Must be a toxin producer to cause disease

C. difficile on CCFA

Cycloserine-cefoxitin-fructose agar (CCFA) is be used to isolate C.difficile <u>Uninoculated</u> <u>Growth</u>

Clostridium tetani

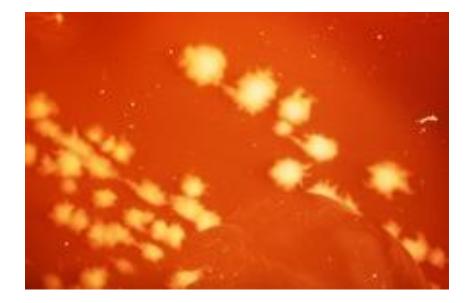
- Associated with lockjaw and tetanospasims
- Requires a neurological identification
- Key characteristics include:
 - Lecithinase: Negative
 - Lipase: Negative
 - Terminal spore location

• Tennis racket shaped cells

- Swarming colonies
- Indole positive(other Clostridia are neg)
- *Diagnosed primarily by:
- -Serological testing
- -Clinical symptoms

C. tetani

www.textbookofmicrobiology.net


GPB with round/oval terminal spore "tennis racket, drumstick"

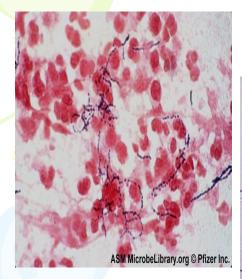
Clostridium septicum

- Associated with malignancy when isolated outside the GI tract
- Key characteristics include:
 - Lecithinase: Negative
 - Lipase: Negative
 - Sub-terminal spore location
 - Swarming colonies
 - Produces "Medusa head" colonies
 - Indole negative

"Medusa Head" colonies

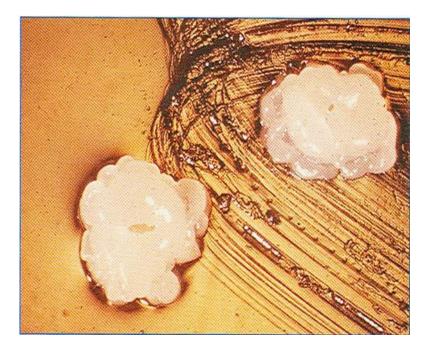
- C. septicum
 produces fingerlike projections
 from the edge of
 colonies
- Identification on Rapid ANA system

Anaerobic, Non-spore Forming Gram Positive Bacilli


Sensitive to:Vancomycin,Kanamycin Resistant to: Colistin

Actinomyces sp.

- Branching Gram positive bacilli
- Characteristic white and raised
 Molar Tooth" colonies
- Catalase: Negative
- Indole: Negative
- Associated with lumpy jaw



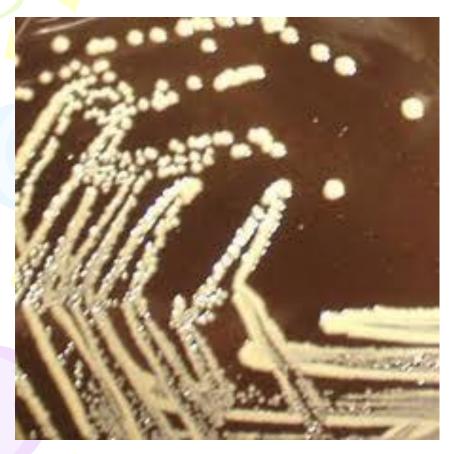
Actinomyces spp.

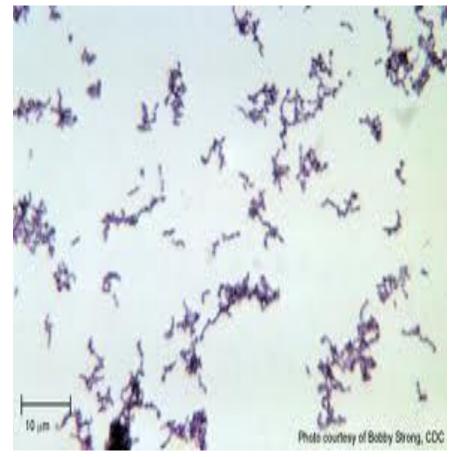
Branching, GPB, may have beaded appearance, partial acid-fast negative, whereas *Nocardia spp.* are partial acid-fast positive

A. israelli. "molar tooth" colonies produced on BHI agar.

Koneman's Color Atlas and Textbook of Diagnostic Microbiology, 6th Ed. Color plate 16-2, F

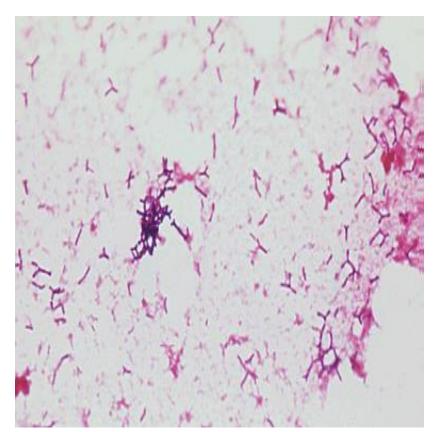
Propionibacterium sp.


- Pleomorphic Gram positive bacilli
- Catalase positive
- Normal flora in oral cavity, gastrointestinal and urogenital tract and on skin
- Associated with acne, endocarditis, bacteremia, meningitis
- P. acnes: Catalase: Positive Indole: Positive



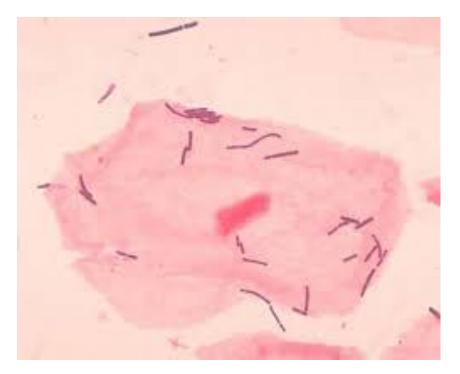
Propionibacterium sp.

CDC Blood agar


Gram stain

Bifidobacterium sp.

- Dog bone or fork shaped gram positive bacilli
- Catalase negative
- Indole negative
- Normal intestinal and oral flora
- Rarely causes disease



Eubacterium species

- Pleomorphic GPB, may be branching
- Normal intestinal and oral flora
- Catalase : Negative
- Nitrate: Positive
- Not considered a pathogen
- E. lentum is a rare human pathogen

Lactobacillus sp.

- Long, thin gram positive bacilli
- Catalase negative
- Indole negative
- Normal flora in mouth, intestines and vagina

Anaerobic, Gram Negative Bacilli

all are normal flora of human mucous membranes

Bacteroides fragilis Group

- Gram negative bacilli
- Can be found in wounds, tissues and blood cultures
- All species:
 - Resistant to Vancomycin, Kanamycin and Colistin
 - Grows on Laked KV plate
 - Catalase positive
 - Stimulated to grow in 20% bile
 - Bacteroides Bile Esculin (BBE) plate
 - Up to 20% bile concentration
 - Hydrolysis of esculin turns plate black
 - CDC-ANA BAP
 - Grey, speckled colonies

Bacteroides Bile esculin (BBE) Gram stain

Bacteroides fragilis Group

	Esculin	Salicin	Trehalose	Indole
B. fragilis	+	-	-	-
B. distanosis	+	+	+	-
B. thetaiotamicron	+	-	+	+
B. vulgatus	-	-	-	-

Pigmented Gram Negative Bacilli (dark brown to black colonies)

Prevotella sp.

- <u>No growth on BBE</u>
 <u>plate</u>
- Growth on KV plate
 - <u>Resistant</u> to <u>Vancomycin</u> and Kanamycin
 - Variable to Colistin
 - Requires vitamin K and hemim

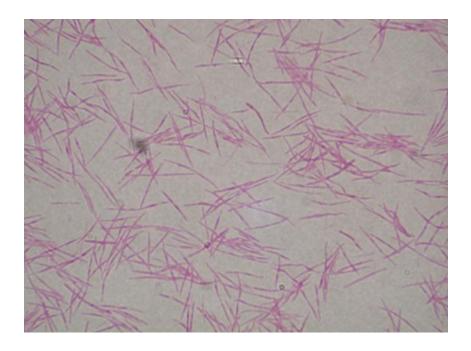
- *Indole negative

- Red fluorescence under UV light

- Porphyromonas sp.
 - <u>No growth on BBE</u>
 <u>plate</u>
 - <u>No Growth on KV</u>
 <u>plate</u>
 - <u>Susceptible</u> to <u>Vancomycin</u>
 - Resistant to Kanamycin and Colistin
 - *Indole positive
 - Red fluorescence under UV light

Fusobacterium sp.

• Key features include:


- Resistance to Vancomycin
- Susceptible to Kanamycin and Colistin
- Catalase negative
- Indole positive
- Not stimulated to grow in 20% bile (no growth on BBE)
- Colonies produce a chartreuse fluorescence under long-wave UV light

Fusobacterium sp.

- F. nucleatum
 - Long, slender, fusiform gram negative bacilli
 - -*Lipase negative
- F. necrophorum
 - Pleomorphic gram negative bacilli or coccobacilli
 - -*Lipase positive
- Key features can be found in Table
 24-8

Fusobacterium sp.

 F. nucleatum
 produces a characteristic fusiform shape on gram stain

Anaerobic, Gram Positive Cocci

Peptostreptococcus sp.

- Susceptible to Vancomycin
- Resistant to Kanamycin and Colistin
- Catalase negative
- Most common:
- ➢P. anaerobius: <u>Indole pos</u>,
 - SPS sensitive
- P. asaccharolyticus: <u>Indole neg</u>, SPS resistant

Anaerobic, Gram Negative Cocci

Veillonella sp.

- Non-pathogenic normal flora
- Resistant to Vancomycin and susceptible to Kanamycin and Colistin
- Red fluorescence under UV light

Question 1

All of the following specimen types are acceptable specimens for processing anaerobic organisms except:

- A. Aspirates
- B. Clean catch urine
- C. Body fluids
- D. Lower respiratory

Question 2

Describe some of the clues that would indicate the possibility of an anaerobic infection?

Question 3

A 36 year old man arrived at the emergency room after noticing a black discoloration in his toe 5 days prior to his visit. Since that time, the discoloration has spread to his lower limb. The attending physician noted severe tissue necrosis and a build-up of gas under the skin and sent a specimen to the lab for examination.

- 1. Do you think this patient possibly has an anaerobic infection? Why?
- 2. List some of the laboratory tests that might be ordered for this patient?
- 3. Describe how this organism might appear on culture media and on a Gram stain?
- 4. What organism do you think is causing this patients symptoms?