Beaumont

	PolicyStat ID: 10602891	
Origination:	12/15/2021	
Effective:	12/15/2021	
Last Approved:	11/15/2021	
Last Revised:	11/15/2021	
Next Review:	11/15/2023	
Document Contact:	Kelly Sartor: Supv,	
	Laboratory	
Area:	Laboratory-Blood Bank	
Key Words:		
Applicability:	All Beaumont Hospitals	

Reading, Grading, and Recording Test Reactions - Blood Bank

Document Type: Procedure

I. PURPOSE AND OBJECTIVE:

This document will provide the Blood Bank staff with instructions for reading, grading, and recording Blood Bank test reactions.

II. POLICIES:

- A. All Blood Bank personnel should be consistent in grading reactions and interpreting test results.
- B. Test tube reactivity must be assessed when the red cells have been completely resuspended from the button.
- C. The lighted viewing mirror must be used as an optical aid in reading test tube results.
- D. Microscopic observation is not routinely recommended but may be useful in distinguishing patterns of agglutination.
- E. Observed test results must be recorded immediately and concurrently upon completion of a critical activity and the final interpretation will be made upon completion of testing.
- F. Observed test results shall be recorded in the Blood Bank computer (LIS) or on a downtime form.

III. CLINICAL SIGNIFICANCE:

A. Rouleaux

- 1. For patients whose samples display rouleaux formation, refer to Transfusion Medicine policy, *Compatibility Testing for Patients with Rouleaux: Saline Replacement Technique.*
- B. Mixed-Field Reactions
 - 1. In most cases, recent transfusion histories should be obtained on patients whose samples display mixed field reactivity.
 - 2. Refer to the following Transfusion Medicine policies:
 - a. Obtaining Patient Histories
 - b. Resolution of ABO/Rh Discrepancies for Patients who have Recently been Transfused

- 3. Mixed-field reactions observed in the gel system and tube method should be recorded in the Blood Bank computer as mixed field (MF).
 - a. Mixed field reactions are not graded with a numerical value.

C. Hemolysis

- 1. Hemolysis observed in testing is considered a positive reaction when the sample used for the testing was not itself hemolyzed.
- 2. Tests performed with a hemolyzed sample may create difficulties in evaluating test results and antibody-induced hemolysis may be masked. Refer to Transfusion Medicine Policy, <u>Triaging and</u> <u>Identifying Acceptable Samples For Testing</u>
- 3. It may be difficult to distinguish a sample that is hemolyzed due to collection technique from a sample involving a hemolytic transfusion reaction. Therefore, if a hemolyzed sample was collected as part of a transfusion reaction evaluation, a 2nd post sample should be collected, to help determine whether the hemolysis is in vivo or due to collection technique. Refer to Transfusion Medicine policy, *Suspected Transfusion Reaction Investigation*.

IV. DEFINITIONS:

- A. **Rouleaux:** An in-vitro phenomenon whereby aggregates of red cells may give a "stacked coin" appearance when observed microscopically. The aggregates may have a copper metallic luster and are refractile, like droplets of oil.
- B. **Hemolysis:** Pink or red supernatant fluid in the test system that occurs when the red cell membrane ruptures.
- C. **Mixed field (MF):** A sample that contains 2 distinct populations of red cells, usually as a result of recent RBC transfusions of a dissimilar ABO or Rh type as the patient. A mixed-field reaction results when one population is agglutinated in testing, while the other population is not.
- D. **Reading:** Observing the hemolysis or agglutination that constitutes the visible endpoint of a red cell antigen antibody interaction.
- E. **Grading:** Determining the strength of agglutination (or adherence as seen in solid-phase methods), or the degree of hemolysis.
- F. Recording: Capturing the graded reaction in writing or electronic media
- G. **Critical Activity:** A procedure conducted by a qualified laboratory employee that yields test results. For manual tube testing, a critical activity may consist of up to 3 test tubes at a time.

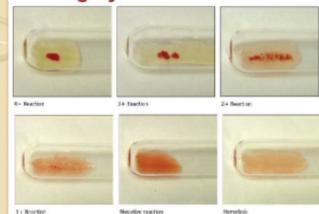
V. REAGENT / EQUIPMENT / SUPPLIES

See applicable *Standard Operating Procedures* for reagents, equipment and supplies needed for each particular function.

VI. SPECIMEN COLLECTION AND HANDLING:

See applicable Standard Operating Procedures for the specimen required for each particular test.

VII. PROCEDURE:

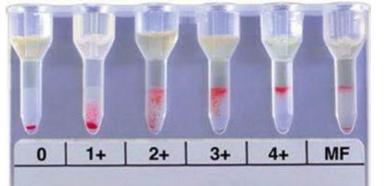

A. Reading and Grading Test Tube Reactions

- 1. Proceed from the applicable procedure after the centrifugation step of the test system (e.g. DAT, antibody screen).
- 2. Observe the supernate for hemolysis.
- 3. Disrupt the red cell button by gently shaking and/or tilting the tube while observing the button using a lighted viewing mirror.
- 4. While using the lighted viewing mirror, continue to gently shake and tilt the tube until the red cell button is completely resuspended.
- 5. Observe cell dispersion with lighted viewing mirror and grade reactions as described below.
- 6. Immediately and concurrently record graded test tube results in the LIS or on the appropriate downtime form.

Graded Reaction	Appearance of Test Tube System	Notes
4+	One solid agglutinate in a clear background	
3+	Several large agglutinates in a clear background	
2+	Medium-size agglutinates in a clear background	
1+	Small agglutinates in a turbid background	
w+	Barely visible agglutination in a turbid background	
0	No agglutination or hemolysis	
MF	Mixed field: a mixture of agglutinated and unagglutinated RBCs	
RU	Rouleaux: aggregates of red cells that can look like "stacked coins"	
Н	Rupture of red cell causes the plasma to be pink or red in color	
m+	Reactions that are observed only microscopically	Not routinely indicated

Test Tube System Graded Reactions

Grading System for Reactions


B. Reading and Grading Microtube Reactions

- 1. Proceed from the applicable procedure after centrifugation of the gel microtube test system
- 2. Read the front and back of each gel card macroscopically for hemolysis and agglutination.
 - a. If either side is reactive, the entire reaction is considered positive
- 3. Grade the microtube reactions as described below.
- 4. Immediately and concurrently record graded test tube results in the LIS or on the appropriate downtime form.

Graded Reaction	Appearance of Gel Test System	Notes	
4+	A solid band of agglutinated red cells are observed on the top of the gel.	A few unagglutinated red cells may filter into the gel near this band	
3+	The majority of the red cell agglutinates are trapped in the upper half of the microtube.		
2+	Red cell agglutinates are dispersed throughout the length of the microtube.	A few unagglutinated red cells may be observed on the bottom of the microtube.	
1+	Red cell agglutinates are observed predominantly in the lower half of the microtube with an unagglutinated red cell button on the bottom of the microtube.	The red cell button at the bottom of the microtube may be disrupted.	
w+	A small number of red cell agglutinates are observed just above the red cell button near the bottom of the microtube.		
0	Uaggluntinated red cells form a well-defined button at the bottom of the tube and hemolysis is absent.		
MF	mixed field is chracterized by agglutinated red cells on top of the gel or dispersed throughout	Not all mixed cell situations have a sufficient minor population to be detected. Mixed-field	

Gel Microtube System Graded Reactions

Graded Reaction	Appearance of Gel Test System	Notes
	the microtube with an unagglutinated red cell button on the bottom of the microtube.	reactions typically occur only in testing with patient's cells, not in testing with the patient's plasma.
Н	Hemolysis will color the liquid portion above the gel a pink or red color depending on the degree of hemolysis.	

Range of Reactions

VIII. LIMITATIONS:

A. ID-Micro Typing System™

- 1. While the manufacturer does not specify a weakly positive reaction, reactions that are consistent with the appearance of w+ as described above, shall be graded as weakly positive.
- 2. Debris, fibrin, or other artifacts associated with plasma, cord blood, or frozen samples may cause a few unagglutinated red cells to be "trapped" on top of the gel.
 - a. These tests may be interpreted as negative.
 - b. Alternatively, the sample may be re-centrifuged after rimming it with wooden sticks and retested.

IX. REFERENCES:

- A. American Association of Blood Bank, Technical Manual, current edition
- B. Ortho Diagnostics Systems Ins., *ID-Micro Typing System™ Interpretation Guide,* Pub. No 6902201, 06-04-2010
- C. AABB Standards for Blood Banks and Transfusion Services, current edition

Attachments

No Attachments

Approval Signatures

Step Description	Approver	Date
	Jeremy Powers: Chief, Pathology	11/15/2021
	Muhammad Arshad: Chief, Pathology	11/10/2021
	Vaishali Pansare: Chief, Pathology	11/9/2021
	Ann Marie Blenc: System Med Dir, Hematopath	11/5/2021
	Ryan Johnson: OUWB Clinical Faculty	11/5/2021
	John Pui: Chief, Pathology	11/5/2021
Policy and Forms Steering Committe (if needed)	Kelly Sartor: Supv, Laboratory	11/5/2021
Policy and Forms Steering Committe (if needed)	Gail Juleff: Project Mgr Policy	11/4/2021
_	Craig Fletcher: System Med Dir, Blood Bank	11/4/2021
	Anji Miri: Supv, Laboratory	11/4/2021
	Rebecca Thompson: Medical Technologist Lead	11/3/2021
	Karrie Torgerson: Supv, Laboratory	11/3/2021
	Teresa Lovins: Supv, Laboratory	11/3/2021
	Michael Rasmussen: Supv, Laboratory	11/3/2021
	Kelly Sartor: Supv, Laboratory	11/3/2021
	Kelly Sartor: Supv, Laboratory	11/3/2021

Applicability

Dearborn, Farmington Hills, Grosse Pointe, Royal Oak, Taylor, Trenton, Troy, Wayne