Current Status: Active PolicyStat ID: 10720385

Beaumont

 Origination:
 2/17/2022

 Effective:
 2/17/2022

 Last Approved:
 2/17/2022

 Last Revised:
 2/17/2022

 Next Review:
 2/17/2024

Document Contact: Michele Sedlak: Medical

Technologist Lead

Area: Laboratory-Hematology

Key Words:

Applicability: Royal Oak

Concentration Formulas - Hematology RO

Document Type: Procedure

I. PURPOSE AND OBJECTIVE:

A. To make common concentration formulas readily available to laboratory staff.

II. APPROXIMATE NORMALITIES FOR CONCENTRATED ACIDS AND BASES:

Acid Bases	Normalities	Specific Gravity
Hydrochloric (HCL)	12 N	1.19
Acetic (CH ₃ COOH)	17.4 N	1.06
Nitric (HNO ₃)	15-17 N	1.42
Sodium Hydroxide (NaOH)	15-18 N	1.50-1.53
Potassium Hydroxide (KOH)	14 N	1.55
Ammonium Hydroxide (NH ₄ OH)	15-17 N	0.880
Sulfuric Acid (H ₂ SO ₄)	36 N (18M)	1.84

III. CALCULATIONS AND INTERPRETATIONS:

- A. Formulas for Transposing Units of Concentration
 - 1. Preparation of % Solutions

$$X\% = X gm$$
 e.g. 10% sucrose = $10 g$ sucrose
100 mL H₂0 100 mL water

-OR-

X% = X mL diluted to a total volume of 100mL

= X mL + (100 – mL distilled water)

E.g., 70% Ethanol = 70 mL absolute + 30 mL water

2. From One Percentage Solution to Another Percentage Solution: V x % = V x %

E.g., 100 mL of 50% isopropyl alcohol from 70% isopropyl alcohol:

Thus, 71.4 mL 70% isopropyl + 28.6 mL distilled water = 50%

3. From Molarity to Normality: N = M x valence

From Normality to Molarity: M = N / valence

From One Normality to Another Normality: $V \times N = V \times N$

E.g., If you need 100 mL of 1 N HCI from concentrated HCI (12N):

12 N * (x mLs) = N * (100 mLs)
X mLs =
$$\frac{1 \text{ N x 100mL}}{12 \text{ N}}$$

X mLs = 8.4 mL

Thus, 8.4 mL concentrated HCI + 91.6 mL distilled water = 1 N HCI.

4. From Normality to Percent Solution: % = N x molecular weight valence x 10

E.g., If you need 10% H₂SO₄ from concentrated H₂SO₄:

% =
$$\frac{N \times M.W.}{V \times 10}$$
 = $\frac{36 \times 98.08}{2 \times 10}$ = 176%
Since $V \times \%$ = $V \times \%$, 10% × 100 mL = 176% × (?)
X mLs = $\frac{10\% \times 100\text{mL}}{176\%}$ = 5.68 mL

Thus, 5.68 mL concentrated H₂SO₄ + 94.32 mL distilled water.

- 5. From Molarity to Percent Solution (gm/100 mL): $\% = M \times M.W.$
- 6. From Percent Solution (gm/100 mL) to Normality: N = %x valence x 10
- 7. From Percent Solution (gm/100 mL) to Molarity: $M = \frac{\% \times 10}{M.W.}$

Attachments

No Attachments

Approval Signatures

Step Description	Approver	Date
Hematology Medical Director Designee	Ann Marie Blenc: System Med Dir, Hematopath	2/17/2022
Policy and Forms Steering Committee Approval (if needed)	Gail Juleff: Project Mgr Policy	2/7/2022
Policy and Forms Steering Committee Approval (if needed)	Michele Sedlak: Medical Technologist Lead	2/7/2022

Step Description	Approver	Date
	Megan Masakowski: Medical Technologist	1/10/2022
	Michele Sedlak: Medical Technologist Lead	12/27/2021
Applicability		
Royal Oak		

