Beaumont	Origination	2/1/2023	Document Contact	Colette Kessler: Mgr, Division Laboratory
	Last Approved	4/17/2023		
	Effective	4/17/2023	Area	Laboratory-
	Last Revised	4/17/2023	Applicability	Chemistry Royal Oak
	Next Review	4/16/2025		

Glucose in Urine (Multistix 10 SG) - Royal Oak

Document Type: Procedure

Status (Active) PolicyStat ID (13365362

I. PURPOSE AND OBJECTIVE:

- A. The test is based on a double sequential enzyme reaction. One enzyme, glucose oxidase, catalyzes the formation of gluconic acid and hydrogen peroxide from the oxidation of glucose. A second enzyme, peroxidase, catalyzes the reaction of hydrogen peroxide with a potassium iodide chromogen to oxidize the chromogen to colors ranging from green to brown.
- B. This test is specific for glucose. No other substance excreted in urine is known to give a positive result. The reagent area does NOT react with lactose, galactose, fructose, nor reducing metabolites of drugs (e.g. salicylates and nalidixic acid).
- C. This document describes the steps for this procedure to assist technologists.

II. SPECIMEN COLLECTION AND HANDLING:

A. Fresh, well-mixed, uncentrifuged urine. It is recommended that testing be done within one hour after voiding. Otherwise immediately refrigerate the specimen and return to room temperature before testing.

III. REAGENTS:

- A. Siemens Multistix 10 SG (#2161)
- B. 2.2% weight for weight (w/w) glucose oxidase (1.3 IU)
- C. 1.0% w/w peroxidase (3300 IU)
- D. 8.1% w/w potassium iodide
- E. 69.8% w/w buffer

F. 18.9% w/w nonreactive ingredients

IV. QUALITY CONTROL (QC):

- A. Both Normal and Abnormal Kova-Trols are run and results are recorded:
 - 1. at the beginning of each shift
 - 2. whenever a new lot number of reagent strips is opened
 - 3. whenever a new shipment of strips is received
 - 4. whenever troubleshooting warrants it

V. PROCEDURE:

- A. Briefly dip the test area of the strip in fresh, well-mixed uncentrifuged urine.
- B. While removing the strip, run the edge against the rim of the urine container to remove excess urine. Hold the strip in a horizontal position to prevent mixing of chemicals from adjacent reagent areas and/or contaminating the hands with urine.
 - 1. If reading visually, compare the **GLUCOSE** reagent area to the corresponding Color Chart on the bottle label at **30 seconds**. Hold strip close to color blocks and match carefully.
 - 2. If reading instrumentally, follow directions given in the Clinitek Advantus procedure.

VI. REPORTABLE RANGE:

The color comparison chart has **SIX** color blocks ranging from turquoise through brown. These represent glucose as negative or present in increasing amounts. To maintain consistency of reporting between visual and instrumental reads, blocks 5 and 6 will be combined so that results will be reported as follows:

Negative	
Trace	100 mg/dL
1+	250 mg/dL
2+	500 mg/dL
3+ or greater >	1000 mg/dL

VII. REFERENCE RANGE:

- A. Negative
- B. Small amounts of glucose are normally excreted by the kidneys. These amounts are usually below the sensitivity of the test.

VIII. SENSITIVITY:

A. 75-125 mg/dL glucose

B. In dilute urines containing < 5 mg/dL ascorbic acid, as little as 40 mg/dL glucose may produce a color change that could be interpreted as positive.

IX. LIMITATIONS/INTERFERING SUBSTANCES:

- A. Moderately high ketone levels (40 mg/dL) may cause false negatives for specimens containing small amounts of glucose (75-125 mg/dL) but the combination of such ketone levels and low glucose levels is metabolically improbable in screening.
- B. Ascorbic acid concentrations of 50g/dL or greater may cause false negatives for specimens containing small amounts of glucose (75-125 mg/dL)
- C. Reactivity of the glucose test decreases as urine specific gravity increases
- D. Reactivity may vary with temperature.

X. REFERENCES:

- A. Multistix 10 SG. Miles, Inc. Diagnostic Division, Elkhart, IN 46515, rev. 04/99
- B. Henry, J.B., Clinical Diagnosis and Management by Laboratory Methods, 20th edition, Philadelphia, W.B. Saunders Co., 2001 p. 376-378.
- C. Hundley, J.M. and Fleming, J.K., Urine Analysis American Society of Clinical Pathologists Workshop, Dearborn MI, 1991.

Approval Signatures

Step Description	Approver	Date
Medical Director	Ann Marie Blenc: System Med Dir, Hematopath	4/17/2023
Policy and Forms Steering Committee Approval (if needed)	Colette Kessler: Mgr, Division Laboratory	4/5/2023
Policy and Forms Steering Committee Approval (if needed)	Gail Juleff: Project Mgr Policy	4/5/2023
Lab Chemistry Best Practice Committee	Caitlin Schein: Staff Physician	4/5/2023
Lab Chemistry Best Practice Committee	Qian Sun: Tech Dir, Clin Chemistry, Path	3/24/2023
	Colette Kessler: Mgr, Division Laboratory	3/24/2023