Clinical History

A 66-year-old man is scheduled for an elective hip replacement surgery. A preadmission test sample (ethylenediaminetetraacetic acid [EDTA] anticoagulant) is submitted to the blood bank for type and screen along with an order for two units of red blood cells (RBCs). No transfusion history is provided.

ABO/Rh/Antibody Screen

Patient RBCs (for	ward typing)	Patient plasma	(reverse typing)						
Anti-A	Anti-B	Anti-D	A ₁ cells	B cells					
4+	0	3+	1+	4+					
Anti-A ₁ lectin	Patient: 4+	A ₁ cells: 4+	A2 cells: 0						
Antibody screen (t	ube LISS method)								
	37 °C	AHG	AHG						
SC1	0	W+							
SC2	0	2+							

Reaction scale = 0 (no reaction) to 4 + (strong reaction); W weak

Tube Panel

					В	Ch-hr	r					1	Kell			Duffy		Kidd		Lewis			MP	NS		P	Lut	Lutheran		Test results: IAT/tube LISS			
Cell #	Rh-hr	D	С	Е	c	e	f	C**	v	K	k	Kp*	Kpb	Js*	Js	Fy*	Fy*	Jk.	Jk	Le	Leb	М	N	S	ñ	Pi	Lu	Lub	IS	4°C	37 °C	AHG	
1	$R_{1}uR_{1}$	+	+	0	0	+	0	+	0	0	+	0	+	0	+	0	+	+	+	0	+	0	+	+	+	+	0	+	2+	4+	0	1+	
2	R,R,	+	+	0	0	+	0	0	0	+	+	0	+	0	+	+	+	+	0	0	+	+	+	+	+	0	0	+	2+	3+	0	2+	
3	$R_{1}R_{2}$	+	0	+	+	0	0	0	0	0	+	0	+	0	+	0	+	+	0	0	0	+	0	+	+	+5	0	+	2+	3+	0	W+	
4	R,r	+	0	0	+	+	+	0	+	0	+	0	+	0	+	0	0	+	0	0	0	+	+	+	+	+	0	+	1+	3+	0	W+	
5	r'r	0	+	0	+	+	+	0	0	0	*	0	+	0	+	0	+	0	+	+	0	0	+	0	+	+	0	+	2+	3+	0	W+	
6	r"r	0	0	+	+	+	+	0	0	0	+	0	+	0	+	+	0	0	+	0	+	+	+	+	+	+w	0	+	2+	3+	0	1+	
7	IT	0	0	0	+	+	+	0	0	+	+	0	+	0	+	0	+	+	+	0	0	+	0	+	+	+5	0	+	2+	3+	0	2+	
8	IT	0	0	0	+	+	+	0	0	0	+	0	+	0	+	+	+	0	+	+	0	+	+	+	0	+5	0	+	2+	4+	0	1+	
9	IT	0	0	0	+		*	0	0	0	*	+	+	0	+	0	+	+	0	0		0	+	0	+	0	0	+	2+	3+	0	W+	
10	IT	0	0	0	+	+	+	0	0	0	+	0	+	0	+	+	0	+	0	0	+	+	+	+	+	+*	0	+	1+	3+	0	W+	
11	$\mathbf{R}_1\mathbf{R}_1$	+	+	0	0	+	0	0	0	0	+	0	+	0	+	0	+	+	0	0	+	+		+	0	+	0	+	2+	3+	0	W+	
Patier	nt cell						Г																						2+	3+	0	W+	

Reaction scale = 0 (no reaction) to 4+ (strong reaction); S strong, W weak

Pre-Warm Panel (37 °C)

					R	h-hr				Kell							ffy	Kidd		Lewis		MNS				P	Lutheran		Test results: IAT/ tube LISS	
Cell	Rh-hr	D	С	Е	c	e	f	C*	v	K	k	Kp	Кр ^ь	Js*	Jsb	Fy	Fyb	Jk*	Jk	Le	Leb	М	N	S	5	Pı	Lu*	Lub	37 °C	AHG
1	R _m R _i	+	+	0	0	+	0	+	0	0	+	0	+	0	+	0	+	+	+	0	+	0	+	+	+	+	0	+	0	0
2	R,R	+	+	0	0	+	0	0	0	+	+	0	+	0	+	+	+	+	0	0	+	+	+	+	+	0	0	+	0	2+
3	R_1R_2	+	0	+	+	0	0	0	0	0	+	0	+	0	+	0	+	+	0	0	0	+	0	+	+	.5	0	+	0	0
4	Ror	+	0	0	+	+	+	0	+	0	+	0	+	0	+	0	0	+	0	0	0	+	+	+	+	+	0	+	0	0
5	r'r	0	+	0	+	+	+	0	0	0	+	0	+	0	+	0	+	0	+	+	0	0	+	0	+	+	0	+	0	0
6	r"r	0	0	+	+	+	+	0	0	0	+	0	+	0	+	+	0	0	+	0	+	+	+	+	+	.w	0	+	0	0
7	rr	0	0	0	+	+	+	0	0	+	+	0	+	0	+	0	+	+	+	0	0	+	0	+	+	.5	0	+	0	2+
8	rr	0	0	0	+	+	+	0	0	0	+	0	+	0	+	+	+	0	+	+	0	+	+	+	0	.5	0	+	0	0
9	rr	0	0	0	+	+	+	0	0	0	+	+	+	0	+	0	+	+	0	0	+	0	+	0	+	0	0	+	0	0
10	rr	0	0	0	+	+	+	0	0	0	+	0	+	0	+	+	0	+	0	0	+	+	+	+	+	.w	0	+	0	0
11	R_1R_1	+	+	0	0	+	0	0	0	0	+	0	+	0	+	0	+	+	0	0	+	+	0	+	0	+	0	+	0	0
Patier	nt cell																												0	0

Reaction scale = 0 (no reaction) to 4+ (strong reaction); S strong, W weak

Additional Study: 4 °C Incubation (Cold Panel)

A ₁ cells	1+
O cells	4+
O cord cells	0
O _i cells	0

- What antibodies did you identify? Cold autoantibody and anti-K alloantibody are present.
- 2. How does the pre-warm panel help you? The pre-warm panel eliminates cold reactions allowing for identification of the warm anti-K antibody. Other methods to negate cold antibody reactions include cold autoadsorption and the use of rabbit erythrocyte stroma (RESt), both of which can remove the cold antibodies (typically immunoglobulin [Ig]M, anti-I, or anti-IH). RESt is an older technique not used often anymore and may remove anti-B antibodies as well.
- 3. What is the significance of the anti-A₁ lectin result? There is 1+ reactivity with A₁ cells in the patient's back type; this could be due to either a naturally occurring anti-A₁ antibody (if patient is of A₂ or other weak subtype of A) or interference from a cold-reacting antibody. The positive reaction with anti-A₁ lectin (Dolichos biflorus) indicates that the patient is A₁ type; thus, the reaction with A₁ cells in the reverse typing is not due to anti-A₁. In this case, it is due to cold autoantibody since the autocontrol is positive in the panel at cold temperatures.

- 4. How do you interpret the results of the 4 °C incubation panel using A₁ cells, O cells, O cord cells, and O_i cells? Do the results of this cold panel have any clinical significance? This identifies that the cold autoantibody is likely anti-IH (i.e., having reactivity with I and H antigens, I antigen is not expressed on cord cells and O_i cells, while H antigen is only weakly expressed on A₁ cells). The results of this panel, though, do not have any clinical significance. Cold-reacting antibodies are most commonly benign cold agglutinins; their significance lies in the potential for interference with ABO typing since this is generally performed at room temperature.
- 5. How many donor RBC units need to be screened in order to find two compatible units as requested? (Refer to the Table of RBC Antigen Frequencies.) K antigen, part of the Kell blood group antigen system, is present in only about 9% of the population (Caucasian frequency); thus, more than 90% of donor RBCs will lack the K antigen and will be compatible with the patient in this case. Dividing 2 by 0.9 equals 2.22; thus, only two units need to be screened in all probability to find two K-antigen-negative RBC units for the patient.
- 6. What do the antibody findings suggest about this patient's past medical history? The finding of anti-K antibody, a warm, immune alloantibody (i.e., requires prior exposure to the antigen for development), suggests that the patient received blood transfusion sometime in the past. Naturally occurring anti-K has been described, but in most cases is IgM, reacting best at room temperature and sometimes associated with infectious illness [1, 2]. Rare cases of autoanti-K mimicking an alloantibody have also been described [3]. If the patient denies any history of red cell transfusion, passive acquisition is possible (such as through recent plasma or platelet transfusion or, in the case of a woman, through exposure during pregnancy). Anti-IH is commonly seen in the serum of healthy A₁ individuals and does not imply any clinical history.

References

- Marsh WL, Nichols ME, Oyen R, et al. Naturally occurring anti-Kell stimulated by E. coli enterocolitis in a 20-day-old child. Transfusion. 1978;18(2):149–54.
- Judd WJ, Walter WJ, Steiner EA. Clinical and laboratory findings on two patients with naturally occurring anti-Kell agglutinins. Transfusion. 1981;21(2):184

 –8.
- Viggiano E, Clary NL, Ballas SK. Autoanti-K antibody mimicking an alloantibody. Transfusion. 1982;22(4):329–32.