Clinical History

A 35-year-old woman with a history of prior Cesarean section (C-section) now presents at 39 weeks of gestation for repeat C-section. A sample (ethylenediamine-tetraacetic acid [EDTA] anticoagulant) is submitted to the blood bank for type and screen along with an order for two units of red blood cells (RBCs). The patient has no history of prior transfusion.

ABO/Rh/Antibody Screen

Patient RBCs	s (forward type)		Patient plasm	a (reverse type)
Anti-A	Anti-B	Anti-D	A ₁ cells	B cells
4+	0	3+	0	4+
Antibody scr	een (tube LISS meth	od)		
	37 °C	AHG		
SC1	0	W+		
SC2	0	0		

Reaction scale = 0 (no reaction) to 4+ (strong reaction)

Tube Panel

		Rh-hr								Kell						Duffy		Kidd		Lewis		MNS			P	Lutheran		Test results: IAT/tube LISS			
Cell #	Rh-hr	D	C	E	c	e	f	C*	v	K	k	Kp*	Kp ^b	Js*	Je,	Fy*	Fy ^h	Jk	Jkb	Le	Leb	M	N	S	s	Pi	Lu	Lub	IS	37 °C	AHG
1	R_mR_i	+	+	0	0	+	0	+	0	0	+	0	+	0	+	0	+	+	+	0	+	0	+	+	+	+	0	+	0	0	0
2	R,R,	+	+	0	0	+	0	0	0	+	+	0	+	0	+	+	+	+	0	0	+	+	+	+	0	0	0	+	0	0	0
3	$\mathbf{R}_{1}\mathbf{R}_{2}$	+	0	+	+	0	0	0	0	0	+	0	+	0	+	+	0	+	0	+	0	+	0	+	+	+5	0	+	2+	0	W+
4	Ror	+	0	0	+	+	+	0	0	0	+	0	+	0	+	0	0	+	0	0	0	+	+	+	+	+	0	+	0	0	0
5	r'r	0	+	0	+	+	+	0	+	0	+	0		0		0	+	0	+		0	0	+	0		+	0		2+	0	W+
6	r"r	0	0	+	+	+	+	0	0	0	+	0	+	0	+	+	0	0	+	0	+	+	+	+	+	+"	0	+	0	0	0
7	rr	0	0	0	+	+	+	0	0	+	+	0	+	0	+	0	+	+	+	0	0	0	+	+	+	+5	0	+	0	0	0
8	rr	0	0	0	+	+	+	0	0	0	+	+	+	0	+	+	+	0	+	+	0	+	+	+	0	+5	0	+	2+	0	W+
9	rr	0	0	0	+	+	+	0	0	0	+	0	+		+	0	+	+	0	0	+	0	+	0	+	0	0	+	0	0	0
10	rr	0	0	0	+	+	+	0	0	0	+	0	+	0	+	+	0	+	0	0	+	+	0	+	+	+"	0	+	0	0	0
11	R ₁ R ₁	+	+	0	0	+	0	0	0	0	+	0		0	+	0	+	+	0	+	0	+	0	+	0	+	0	+	2+	0	W+
Patien	st cell																												0	0	0

Reaction scale = 0 (no reaction) to 4+ (strong reaction); S strong, W weak

- Anti-Lea is detected in this panel.
- Anti-V and anti-Kpa cannot be ruled out but are unlikely since these react more strongly at warm temperatures.
- Anti-Lea as well as anti-Leb antibodies are not usually clinically significant since they are cold reacting IgM antibodies, that do not cause haemolytic transfusion reactions or HDFN.
- Lewis antibodies are typically found in Le(a-b-) individuals.
- It is not uncommon for some women who are Lea+ or Leb+ to lose the Lewis antigen expression during pregnancy and develop Lewis antibodies.
- Warm reacting IgG anti-Lea has been found on rare occasions but is unlikely to cause HDFN as Lewis antigens are poorly expressed on neonatal RBCs
- IAT can be performed at strict 37 to see if weak reaction are no longer present.
- © Springer International Publishing AG, part of Springer Nature 2018 M. T. Friedman et al., *Immunohematology and Transfusion Medicine*, p15