TRAINING UPDATE

Lab Location: Department:

GEC, SGAH & WAH Core

WAH

Date Distributed:

Due Date:

Implementation:

7/23/2014 8/13/2014 **8/13/2014**

DESCRIPTION OF PROCEDURE REVISION

Name of procedure:

Body and Synovial Fluid Analysis GEC.H07, SGAH.H09, WAH.H10 v3

Description of change(s):

Discontinue Synovial Fluid testing at GEC

Section	Reason	
1, 8.6	Specify synovial fluid testing sites	
3.1 Add instruction for sending synovial fluid from GEC to SGAH		

This revised SOP will be implemented on August 13, 2014

Document your compliance with this training update by taking the quiz in the MTS system.

Approved draft for training all sites (version 3)

Technical SOP

Title	Body and Synovial Fluid Analysis		
Prepared by Cynthia Reidenauer / Cathy Keifer Date: 1		11/22/2011	
Owner	Robert SanLuis	Date:	11/26/2013

Laboratory Approval	Local Effective Date:		
Print Name	Signature	Date	
Refer to the electronic signature page for approval and approval dates.			

Review		
Print Name	Signature	Date

TABLE OF CONTENTS

1.	TEST INFORMATION	3
2.	ANALYTICAL PRINCIPLE	4
3.	SPECIMEN REQUIREMENTS	4
4.	REAGENTS	5
5.	CALIBRATORS/STANDARDS	7
6.	QUALITY CONTROL	7
7.	EQUIPMENT and SUPPLIES	9
8.	PROCEDURE	10
9.	CALCULATIONS	14
10.	REPORTING RESULTS AND REPEAT CRITERIA	14
11.	EXPECTED VALUES	15
12.	CLINICAL SIGNIFICANCE	15
13.	PROCEDURE NOTES	17
14.	LIMITATIONS OF METHOD	18
15.	SAFETY	18
16.	RELATED DOCUMENTS	19
17.	REFERENCES	19
18.	REVISION HISTORY	19
19.	ADDENDA	19

1. TEST INFORMATION

Assay	Method/Instrument	Local Code
Cell Count and Diff, Pleural Fluid Cell Count and Diff, Peritoneal Fluid Cell Count and Diff, Pericardial Cell Count and Diff, Fluid, Other	Hemacytometer, Microscope	FCCD for all Body fluids EXCEPT Synovial (see below)
Cell Count and Diff, Synovial fluid to include Crystal exam (SGAH & WAH only)		SFCC

Note: For CSF, refer to procedure 'Cell Count and Differential, CSF' (GEC.H06, SGAH.H08,

WAH.H09)

Synonyms/Abbreviations Body fluid cell count/Body Fluid Exam Synovial Fluid cell count/Synovial Fluid Exam

Department	
Hematology	

2. ANALYTICAL PRINCIPLE

The total nucleated cell count in body fluids is performed manually using a hemacytometer. A differential cell count is performed via cytospin. The color, appearance and volume of the fluid are also reported.

In Synovial Fluids only, crystals are first observed microscopically with polarizing lenses, and if present, are identified.

3. SPECIMEN REQUIREMENTS

3.1 Patient Preparation

Component	Special Notations
-	-
Fasting/Special Diets	Not applicable
Specimen Collection and/or Timing	None defined
Special Collection Procedures	Fluid is collected in sterile vacuum bottle or other collection container (syringe) and then aliquoted as needed.
	Process for Synovial Fluid specimens at Germantown
	Emergency Department ONLY:
	Germantown:
	1. Record Total Volume onto original specimen label and
	lavender top tube and then aliquot specimen into
	appropriate containers:
	 3ml into Lavender Top (EDTA) for cell count
	 1ml into plastic vial unpreserved for crystal analysis
	 1ml into sterile container for culture and gram stain
	 2ml into plastic aliquot tube to be sent to Chantilly (by
	core lab processors) for chemistry analysis.
	2. Inspect the sample prior to sending to SGAH for testing.
	If solid clots are found, notify the caregivers of the extent
	of testing that can be performed on the sample.
	3. Track specimen to SGAH using the template GLAB and
	send to SGAH via STAT courier.
	4. KEEP some of the original sample at GEC.
Other	Not applicable

3.2 Specimen Type & Handling

specimen Type & Handing	
Criteria	
Type -Preferred	Site specified on collection
	3 mL fluid in EDTA for Count, Diff
	1 mL fluid (unpreserved) for Crystal
-Other Acceptable	3 mL fluid in Heparin or Plastic Vial
Collection Container	Lavender Top Tube
- Alternate	Heparin (Green Top Tube) or Plastic Vial
Volume - Optimum 3.0 mL	

Criteria			
- Minimum	1.0 mL If less than 1.0 mL is received, call the physician and ask the priority of tests needed. Note: In the case of a small volume synovial fluid the crystal exam may be the top priority		
Transport Container and Temperature	Collection con	tainer at room temperature	
Stability & Storage Requirements	Room Tempera Refrigerated:	ature: 48 hours 48 hours	
	Frozen:	Unacceptable	
Timing Considerations	Not applicable	<u> </u>	
Unacceptable Specimens & Actions to Take	Since body fluid specimens are more difficult to obtain and		
	Condition	Then	
	Small clots noted	Perform test, append results with free text comment: Cell count may be inaccurate due to presence of clots in sample	
	Solid clot	In the presence of a solid clot a cell count cannot be performed. A slide can be made on the surrounding fluid and an examination should be made for cellular content. (ie many rbc, few wbc noted)	
	Age of specimen	Since each specimen deteriorates at unpredictable ranges, aged specimens are to be tested and evaluated for significant deterioration of TNC. Append results with free text comment, "Count performed on specimen #-days old, appearance of cells may be affected." Only results deemed valid will be reported. Unacceptable results cannot be reported and the test should be cancelled. Result the test as: <i>Unsuitable for analysis due to the age of the specimen.</i> Test has been cancelled. Perform CRW to credit the test. Notify a caregiver	
Compromising Physical Characteristics	None defined		
Other Considerations	None defined		

4. REAGENTS

Refer to the Material Safety Data Sheet (MSDS) supplied with the reagents for complete safety hazards. Refer to the section in this procedure covering "SAFETY" for additional information.

Quest Diagnostics Nichols Institute Site: GEC, SGAH & WAH

> 4.1 **Reagent Summary**

Reagents	Supplier & Catalog Number	
Rinse	Wescor, SS-035A	
Thiazin	Wescor, SS035/049B	
Eosin	Wescor, SS-035C	
Methanol	Wescor, SS-MEOH	
Aerofix	Wescor, SS-148	
0.9% Saline	Thermo 0.9% Saline cat # 23535435	
22% Albumin (Obtain from Blood Bank)	Immucor CE 0088	
Diff Quick Stain Pak (GEC only)	Siemens	
0.005% Methylene Blue Diluting Fluid	Chantilly reagent room	

4.2 **Reagent Preparation and Storage**

NOTE: Date and initial all reagents upon opening. Each container must be labeled with (1) substance name, (2) lot number, (3) date of preparation, (4) expiration date, (5) initials of tech, (6) any special storage instructions; check for visible signs of degradation.

Reagent	Wescor Aerospray Rinse
Container	Plastic Bottle
Storage	Room temperature
Stability Manufacturer's expiration date	
Preparation	Ready to use

Reagent	Wescor Aerospray Thiazin	
Container	Plastic Bottle	
Storage	Room temperature	
Stability	Manufacturer's expiration date	
Preparation	Ready to use	

Reagent	Wescor Aerospray Eosin
Container	Plastic Bottle
Storage	Room temperature
Stability	Manufacturer's expiration date
Preparation	Ready to use

Reagent	Wescor Aerospray Aerofix	110
Container	Plastic Bottle	orm rev
Storage	Room temperature	Ased 5/
Stability	Manufacturer's expiration date	00/10
Preparation	Add 10 ml to Methanol and mix well prior to use.	

Reagent	0.9% Saline (Obtain fresh daily from Blood Bank)	
Container	Plastic Bottle	
Storage	Room temperature	
Stability	24 hours, working supply in hematology. Open expiration on container in Blood Bank is 30 days.	
Preparation	Ready to use	

Reagent	22% Bovine Albumin	
Container	Glass Bottle 10 ml	
Storage	1°-10° C for long term storage	
Stability	Stable until expiration date on the bottle. If turbid, discard.	
Preparation	Ready to use	

Reagent	Diff Quick Stain Pack (GEC)
Container	Plastic Bottle
Storage	Room temperature
Stability	Manufacturer's expiration date
Preparation	Ready to use

Reagent	0.005% Methylene Blue Diluting Fluid. Obtain when needed from the reagent room in Chantilly.
Container	Brown Glass Bottle
Storage	Room temperature
Stability	Manufacturer's expiration date. Aliquot small amount to use when needed. Stability of aliquot is 24 hours.
Preparation	Ready to use

5. CALIBRATORS/STANDARDS

N/A

6. QUALITY CONTROL

6.1 Controls Used

Control	Supplier & Catalog Number
Cell-Chex - 2mL each of Level L1-UC,	Streck Laboratories, Inc. Cat. #212431
L1-CC and L2	

6.2 Control Preparation and Storage

NOTE: Date and initial all controls upon opening. Each container should be labeled with (1) substance name, (2) lot number, (3) date of preparation, (4) expiration date, (5) initials of tech, and (6) any special storage instructions; check for visible signs of degradation.

Control	Cell-Chex Level L1-UC, L1-CC and L2				
Preparation	None. It is not necessary to warm the controls to room				
	temperature before using.				
Storage/Stability	• Store upright at 2-8°C				
	Closed-vial stability 180 days.				
	Open-vial stability 30 days				

6.3 Frequency

• Cell Count and Cytocentrifuge QC is performed every 8 hours of patient testing for manual body fluid counting and per technologist.

QC menu each level of controls is as follows:

L1-UC perform cell count and crystal exam
L1-CC perform a cytospin differential and a crystal exam

L2 perform cell count only

- Automated or Manual stain methods is performed once per day. A smear must be reviewed on a daily basis to verify that the staining is adequate for differential of the various cells. The result of this review is documented in the manual Hematology QC book.
- Diluting fluid must be checked daily for contamination and documented. Refer to section 8.3

6.4 Tolerance Limits

a) Cell count by Manual Hemacytometer:

QC values for Manual Hemacytometer are lot specific so check package insert for lot number and expiration date. The lot number and ranges for each lot in use will be available on the Cell Chex Log.

- If both QC values are within 2 SD, patient results may be released.
- If a control value is >2SD, repeat the control before running patient samples. If the repeat control is within 2SD, patient samples may be run.
- If the repeat of the control value is still >2SD, further investigation is required before running patient samples.

b) Differential %:

QC values for Differential % are lot specific so check package insert. The lot number and ranges for each lot in use will be available on the Cell Chex Differential Log.

c) Crystal exam

Quest Diagnostics Nichols Institute Site: GEC, SGAH & WAH

Note the absence or presence of crystals and using the polarizer attachment identify the type of crystal present; Monosodium Urate (uric acid) or Calcium Phosphate.

The lot number and ranges for each lot in use will be available on the Cell Chex Log.

d) Corrective Action:

- All rejected runs must be effectively addressed through corrective action. Steps taken in response to QC failures must be documented. Patient samples in failed analytical runs must be <u>reanalyzed</u>.
- Corrective action documentation must include the following: The QC rule(s) (or specific QC criteria) violated, the root cause of the problem, steps taken to correct the problem, how patient samples were handled, and the date and initials of the person recording the information.

e) Review of QC

- Refer to SOP Laboratory Quality Control Program for more details.
- Upon weekly and monthly review of QC, if the SD's or CV's are greater than the above maximums, investigate the cause for the imprecision and document implementation of corrective actions.

6.5 Review Patient Data

Since only a few patient samples may be tested in one day, daily review for trends may not be applicable.

6.6 Documentation

QC results are recorded on the Cell Chex QC log sheets.

6.7 Quality Assurance Program

The laboratory participates in CAP proficiency testing.

7. EQUIPMENT and SUPPLIES

7.1 Assay Platform

Not applicable

7.2 Equipment

Equipment	Supplier
Wescor Aerospray Cytocentrifuge	Wescor, Inc
Microscope	Not specified
CytoTek centrifuge (GEC only)	Shandon

Form revised 3/31/00

7.3 Supplies

Supply	Supplier & Catalog Number	
Disposable Pipettes	Fisher Brand or equivalent	
Hemacytometer (disposable) C-	InCyto co, Ltd DHC-N01-5 neubauer improved	
CHIP		
MLA pipette and tips	Not specified	
Disposable tubes	Not specified	
Cover glass	Fisher Scientific, Cat.#12-542-1B or equivalent	
Microscope Slides	Fisher Scientific, Cat.#12-550-15 or equivalent	
Petri Dish	Fisher Scientific, Cat.#08-757-12 or equivalent	
Applicator Sticks	Bulk Pack, Multiple Vendors	
Cytopro	Wescor, Cat. #SS-113	

8. PROCEDURE

NOTE: For all procedures involving specimens, buttoned lab coats, gloves, and face protection are required minimum personal protective equipment. Report all accidents to your supervisor.

8.1 Color: Determine the color of the body fluid and report as:

IF	THEN	IF	THEN
Amber	AMB	Gray White	GRAY
Blue	BLUE	Light Yellow	LYEL
Brown	BRWN	Orange	ORNG
Colorless	COLR	Pale Yellow	YEL
Dark Yellow	DYEL	Red	RED
Green	GRN	Straw	STRW
		Yellow	YEL

8.2 Appearance: Determine the appearance of the body fluid and report as:

IF	THEN	IF	THEN
Bloody	BLDY	Clotted	CLTD
Bloody, cloudy	BLDY-CLDY	Hazy	HAZY
Clear	CLER	Turbid	TUR
Cloudy	CLDY	Slightly Cloudy	SLCL

8.3 Concentration

Step	Specimen Preparation
1.	Place a drop of 0.005% Methylene Blue diluting fluid on a slide and coverslip.
	Examine under 100X for contamination with artifacts, crystals or bacteria,
	replace fluid if necessary. Record the examination on the Cell Count
	Worksheet. If the diluting fluid is acceptable to, proceed to specimen dilution.

SOP ID: GEC.H07, SGAH.H09, WAH.H10 SOP version # 3 Quest Diagnostics Nichols Institute Site: GEC, SGAH & WAH

Step	Specimen Preparation
2.	Inspect specimen to determine the appropriate dilution.
	a. All specimens will be diluted with 0.005% Methylene Blue Diluting fluid.
	b. The minimum dilution is 1:2. This will ensure distinction between RBC and TNC. Red Cells will not pick up the methylene blue stain and will appear agranular. Methylene Blue allows the visual distinction of nucleated cells by staining the granules a faint blue.
3.	Mix specimen well and make the appropriate dilution. Refer to dilution tables below.

Step	1:2 Dilution
1.	Perform the diluting fluid check as described above. If the diluting fluid is
	acceptable to use, proceed to dilution of the specimen.
2.	Mix specimen well. Using a 100μL pipette, add 100μL of body fluid to 100μl
	of Methylene Blue Diluting Fluid. Mix dilution well. Let sit 10-15 minutes
	Dilution Factor is 2
3.	Charge the two chambers of the hemacytometer by touching the tip of the
	pipette to the coverslip edge where it meets the chamber floor. The chamber
	will fill by capillary action if the hemacytometer and coverslip are clean.
4.	If the hemacytometer is overcharged, it must be discarded and a fresh one
	used.
5.	Place the charged hemacytometer in a humidified Petri dish for 10 minutes to
	allow the cells to settle.
6.	Place the hemacytometer on the microscope and examine. The area to be
	counted is adjusted according to the sample.
	• If less than 20 cells are present in one square, count all the squares.
	• If greater than 20 cells are present in one square, count the four corner
	squares only.
	• If greater than 200 cells are present in one square count 5 of the 25
	squares in the middle square.
	ALWAYS USE THE AVERAGE COUNT FROM BOTH SIDES OF THE
	CHAMBER IN THE FORMULA. Count the total number of rbcs and
	nucleated cells present on both sides. The sides should agree within 20%.
7.	Calculate the total number of RBCs and nucleated cells. Follow instructions
	on the Cell Count Worksheet to calculate results.
8.	All calculations must be recorded on worksheet.

Step	Diluted Specimen 1:10
1.	Perform the diluting fluid check as described above. If the diluting fluid is
	acceptable to use, proceed to dilution of the specimen.
2.	Mix specimen well. Using a 100μL pipette, add 100μL of body fluid to 900μl
	of Methylene Blue Diluting Fluid. Mix dilution well. Let sit 10-15 minutes.
	Dilution Factor is 10
3.	Charge a counting chamber (one pipette per side), using proper technique.
4.	Place in a Petri dish for about 10 minutes to let the cells settle.
5.	For counting guidelines, follow steps 6 through 8 for 1:2 Dilution

Quest Diagnostics Nichols Institute Site: GEC, SGAH & WAH

Step	Diluted Specimen 1:20
1.	Perform the diluting fluid check as described above. If the diluting fluid is
	acceptable to use, proceed to dilution of the specimen.
2.	Mix specimen well. Using a 50μL pipette, add 50μL of body fluid to 950μl of
	Methylene Blue diluting fluid. Mix dilution well. Let sit 10-15 minutes.
	Dilution Factor is 20
3.	Charge a counting chamber (one pipette per side), using proper technique.
4.	Place in a Petri dish for about 10 minutes to let the cells settle.
5.	For counting guidelines, follow steps 6 through 8 for 1:2 Dilution

Step	Diluted Specimen 1:50
1.	Perform the diluting fluid check as described above. If the diluting fluid is
	acceptable to use, proceed to dilution of the specimen.
2.	Mix specimen well. Using a 20µL pipette, add 20µL of body fluid to 980µl of
	Methylene Blue Diluting Fluid. Mix dilution well. Let sit 10-15 minutes.
	Dilution Factor is 50
3.	Charge a counting chamber (one pipette per side), using proper technique.
4.	Place in a Petri dish for about 10 minutes to let the cells settle.
5.	For counting guidelines, follow steps 6 through 8 for 1:2 Dilution

Step	Diluted Specimen 1:100
1.	Perform the diluting fluid check as described above. If the diluting fluid is
	acceptable to use, proceed to dilution of the specimen.
2.	Mix specimen well. Using a 10μL pipette, add 10μL of body fluid to 990μl of
	Methylene Blue Diluting Fluid. Mix dilution well. Let sit 10-15 minutes.
	Dilution Factor is 100
3.	Charge a counting chamber (one pipette per side), using proper technique.
4.	Place in a Petri dish for about 10 minutes to let the cells settle.
5.	For counting guidelines, follow steps 6 through 8 for 1:2 Dilution

8.4 Cytospin

Step	Cytospin		
1.	Assemble sample chamber and glass microscope slide in the Wescor		
	Aerospray cytocentrifuge carousel. At GEC, follow Cytospin procedure.		GEC, follow Cytospin procedure.
2.	IF	THEN	
	Nucleated cell	Place 3-5 drops of fluid plus 1 drop of albumin into a	
	count is <300	disposable cytofuni	nel and place into the Cytospin
		centrifuge. The alb	oumin is used to make the cells adhere
		to the slide better b	efore the staining procedure. Synovial
		fluids do not require albumin added.	
	Nucleated cell	Cells/ μL	Dilution
	count is >300	301-700	1:2 (5 drops fluid+ 5 drops saline)
		701-1500	1:5 (2 drops fluid + 10 drops saline)
		1501-3000	1:10 (2 drops fluid + 20 drops saline)
		>3000	1:20 (2 drops fluid + 40 drops saline)
		Mix dilution well and place 3-5 drops into the Cytospin	
		funnel. Add 1 drop of albumin.	

Step	Cytospin
3.	Centrifuge Sample:
	See procedure Aerospray Hematology Slide Stainer Cytocentrifuge (SGAH/WAH) or Cytospin CSF/Body Fluid Slide Preparation (GEC) as appropriate.
4.	Stain slide using the Aerospray stainer or Diff Quick Stain Pack as appropriate

8.5 Differential Count

IF	THEN
Cell count is <10	Do not perform differential. Result with NOTP- ; due to an
	insufficient number of cells in the sample.
Cell count is >10	Perform a 5 part differential of 100 cells on a cytocentrifuged
	specimen using Wescor slide stainer, or a manual stain (GEC).
	The nucleated cells are classified and reported as a percentage.
	Examine smear for the presence of immature or abnormal cells,
	crystals and bacteria. Refer to a Pathologist if abnormal or
	immature cells are noted.

8.6 Crystal Examination (SGAH and WAH only)

Step	Crystal Examination
1.	Place a drop of fluid on a clean glass slide and cover slip. Examine the preparation using polarized light to detect monosodium urate or calcium pyrophosphate dihydrate or cholesterol crystals.
3.	Using 40X lens, scan for presence of refractile material, crystals normally are either needle shaped or rod shaped and may be intra or extracellular (exceptions being cholesterol plates; irregular shaped steroid crystals and contaminants).
5.	Having located a crystal, carefully rotate the full wave plate to the right so that it now overlaps onto the illuminator. Moving the orientation handle while observing the crystal will result in a color change of the crystal. To properly identify crystals it is necessary to find at least one crystal oriented in North-South (vertical) and one in East-West (horizontal) position.
6.	This setting is such that if the long axis of a crystal lined up horizontally to the front is <u>blue</u> in this position it is <u>positively birefringent</u> . If the crystal is <u>yellow</u> in this position it is <u>negatively birefringent</u> . When the red compensator is rotated 90 degrees to the right side, the positively birefringent crystal turns yellow and the negatively birefringent crystal turns blue.
7.	Monosodium uric acid crystals are oriented parallel to the slow north-south axis and will be yellow in color. The east west will be blue. If the polarizer orientation handle is moved to the extreme right, the north-south crystals will be blue and the east-west crystals will be yellow.
8.	Calcium pyrophosphate crystals (pseudogout) are parallel with the north-south axis will be blue. The east-west ones will be yellow. Moving the orientation handle to the extreme right will switch the colors.
9.	Cholesterol crystals are rhombic or rectangular notched plates. They may polarize into many colors.

9. CALCULATIONS

Refer to cell count worksheet. The master cell count formula is:

$$\frac{\text{Cells Counted}}{\text{\# of squares counted}} \times 10 \times \text{dilution}$$

10. REPORTING RESULTS AND REPEAT CRITERIA

10.1 Interpretation of Data

None required

10.2 Rounding

All results are rounded to whole numbers.

10.3 Units of Measure

Parameter	Units
Red Blood Cell Count	Cells/µl
Total Nucleated Cell Count (TNC)	Cells/µl
Differential Counts	%

10.4 Clinical Reportable Range

None defined

10.5 Repeat Criteria and Resulting

Any duplicate counts not agreeing within 20%.

All Body fluid and Synovial fluid counts must be reviewed by a second technologist prior to resulting. Calculations must be rechecked and proper placement and documentation of cell counts on the worksheet must be verified. In addition, once typed into the computer a second technologist must verify the proper placement of the counts **PRIOR TO ACCEPTING THE RESULTS.**

Second tech review for Germantown Emergency Center ONLY:

Due to the fact that there is only one person working per shift, if a Body fluid or a Synovial fluid is performed then it will be the first duty of the next shift tech to review the cell count worksheet and compare it to the results entered into the computer. The reviewing tech will initial that the second tech review was performed.

All fluids needing a pathology review are to be taken to the pathologist on call for Hematology. Unless it has a cytology order, all slides must be accompanied by a Pathologist slide review request.

10.6 Crystal Resulting

Report the presence or absence of crystals seen under high power using the following guidelines. Also note if crystals are intra- or extra-cellular or both.

- a. None seen
- b. Crystals seen. Report the type of crystal seen to include Monosodium Urate, Calcium Pyrophosphate or Cholesterol.

11. EXPECTED VALUES

11.1 Reference Ranges

Parameter/Units of Measurement	Reference Range	
Color	Pleural Fluid – Pale Yellow	
	Peritoneal Fluid – Pale Yellow/Straw	
	Pericardial Fluid – Pale Yellow/Straw	
	Synovial Fluid-Pale Yellow/Straw	
Appearance	Clear	
Red Blood Cells/µl	Not Established	
Total Nucleated Cells/µl	Not Established	
Neutrophils/ %	Not Established	
Lymphocytes/ %	Not Established	
Monocyte/Macrophage/ %	Not Established	
Eosinophils/ %	Not Established	
Mesothelial/%	Not Established	
Crystal	None Seen	

11.2 Critical Values

None established

11.3 Priority 3 Limits

None established

12. CLINICAL SIGNIFICANCE

12.1 Pleural and Ascitic Fluid

These fluids are classed as either transudates or exudates. The class indication is of great diagnostic importance.

- Transudates are due to alterations in the formation or reabsorption and are mechanical rather than pathologic in nature.
- Exudates are caused by an increase in the formation and decrease in reabsorption of the fluid (pleural or ascetic). Inflammation of the pleural or peritoneal lining or other diseases causes the formation of this fluid.

To differentiate fluids into transudates and exudates:

Parameter	Transudates	Exudates	
Specific Gravity	<1.016	>1.016	
Protein	<3.0 g/dl	>3.0 g/dl	
LDH	<200 IU	>200 IU	
Total Nucleated Cell Count	<1000/nm3	>1000/nm3	

SOP ID: GEC.H07, SGAH.H09, WAH.H10 SOP version # 3 CONFIDENTIAL: Authorized for internal use only.

Page 15 of 19

	(Predominant cell type mononuclear)	
Cultures	Negative	Positive or Negative

Some causes of ascetic fluid effusions are:

- **Transudates**: Congestive heart failure, cirrhosis, hypoproteinemia, and diffuse hepatic metastases.
- **Exudates**: Infections (either primary or secondary peritonitis), malignant disorders, trauma, and pancreatitis.
- Chylous: Trauma, carcinoma, lymphoma, and tuberculosis.

12.2 Peritoneal Dialysate

- Is used frequently for home renal dialysis patients. Samples of this fluid may be sent to the lab to check for leukocytosis due to bacteria infection. A large proportion of these patients develop peritonitis in the first year of treatment.
- A WBC count of more than 100/mm³ with >50% neutrophils is the criteria used to establish an infection. The Wright stained smear will frequently show both intracellular and/or extracellular bacteria.

12.3 Synovial Fluid: Categorization of Arthritides or Joint Diseases

Except for the identification of crystals and culture for microorganisms, synovial fluid examination usually does not elicit a specific diagnosis. However, examination of the following characteristics is often valuable in categorizing a joint disease and in facilitating the establishment of a diagnosis: volume, clarity, color, viscosity, mucin clot formation, spontaneous glucose, crystals, and microbiologic culture.

By evaluating these characteristics of the fluid, joint disorders can be separated into five disease groups:

Disease Groups	Joint Disorders
Group I	Degenerative joint disease, Trauma, Osteochondritis
Non - inflammatory	dissecans, Osteochondromatosis, Neuropathic
	osteoarthropathy, Pigmented villonodular synovitis
Group II	Rheumatoid arthritis, Reiter's syndrome, Alkylosing
Inflammatory	spondylitis, Rheumatic fever, System lupus
	erythematosus, Scleroderma, Arthritis with Chronic
	ulcerative colitis or Regional enteritis
Group III	Bacterial, Fungal
Infections	
Group IV	Gout, Pseudogout
Crystal - induced	
Group V	Hemorrhagic diatheses including – Hemophilia, Trauma,
Hemorrhage	Neuropathic osteoarthropathy

Quest Diagnostics Nichols Institute Site: GEC, SGAH & WAH

Synovial Fluid Test Results According to Group of Arthritides						
Test	Normal	Group I Noninflammatory	Group II Inflammatory	Group III Infectious	Group IV Crystal Induced	Group V Hemorrhagic
Clarity	Clear	Clear or Cloudy	Cloudy	Very	Cloudy	Very
				Cloudy		Cloudy
Color	Yellow	Yellow	Yellow	Gray-white	Opalescent or colorless	Bloody
Leukocyte	< 200	200-3,000	3,000 -	10,000 -	1,000 -	>5,000
Count, per			>100,000	>100,000	100,000	
nm3						
% PMN (Segs)	<25	<30	>50	>80	>70	>25
Crystals	No	No	No	No	Yes	No

- 12.4 Crystals are seldom seen except in arthritides Group IV. Urate crystals are seen in gout; calcium pyrophosphate crystals are seen in pseudogout; and corticosteroid crystals may be present following therapeutic intra-articular injection of steroid. The presence of cholesterol crystals has been described in osteoarthritis, rheumatoid arthritis, and familial hypercholesterolemia. Oxalate crystals will be seen if the synovial fluid was collected in tubes containing oxalate anticoagulant.
- 12.5 Corticosteroid crystals are usually needle-shaped. They can be present in leukocytes, and have varying birefringence patterns depending on the particular steroid preparation used for therapeutic injection. Consequently, for correct interpretation of needle-shaped crystals, one must know whether a prior therapeutic injection has been given. Cholesterol crystals appear as notched plates, are not present in leukocytes, and are strongly birefringent.

12.6 Additional Microscopic Findings:

The microscopic examination of synovial fluid may show red cells, leukocytes, and crystal-bearing leukocytes, as previously described. The presence of synoviocytes (synovial lining cells) in the fluid is associated with pigmented villonodular synovitis, rheumatic fever and osteoarthritis. Synovial cells are round and much larger than leukocytes. Cartilage cells, when present in the synovial fluid, are associated with traumatic arthritis, osteoarthritis, and pseudogout. Cartilage cells are much larger than leukocytes and irregular in outline. RA cells, also called ragocytes, are segmented neutrophils containing round inclusions in their cytoplasm. These inclusions contain immunoglobulin and complement. As the name implies, RA cells occur in rheumatoid arthritis, but are not specific for the diagnosis. Wright-stained smears from patients with systemic lupus erythematosus (SLE) may show typical LE cells in the synovial fluid

13. PROCEDURE NOTES

- FDA Status: Laboratory Developed Test (LDT) without message
- Validated Test Modifications: None

Quest Diagnostics Nichols Institute Site: GEC, SGAH & WAH

- Perform cell counts as soon as possible since cells deteriorate with time.
- If there is a clot, perform count on available liquid and make notation in the report. Counts on partially clotted samples may be affected depending whether or not cells are trapped in the clot.
- Low power scanning should be performed on smear to evaluate cell distribution and evaluate for presence of malignant cells.
- If crystal examination is ordered, perform this test first to help estimate the dilution needed for the cell count.

14. LIMITATIONS OF METHOD

14.1 Analytical Measurement Range

None defined

14.2 Precision

Not applicable

14.3 Interfering Substances

- Contamination with birefringent talcum powder may interfere with crystal analysis.
- Use of powdered EDTA or oxalate as an anticoagulant may interfere with crystal analysis.

14.4 Clinical Sensitivity/Specificity/Predictive Values

None defined

15. SAFETY

The employee has direct responsibility to avoid injury and illness at work. Nearly all harmful exposures to infectious substances and chemicals, and other injuries, can be avoided with effective training and consistent safe work practices.

Become familiar with the Environmental Health and Safety (EHS) Manual to learn the requirements on working safely and protecting the environment from harm. Although lab work typically focuses on the hazards of working with specimens and chemicals, we must also control other important hazards.

- Slips, trips, and falls cause many serious injuries. Please ensure that spills are cleaned quickly (to avoid slippery floors) and that you can see and avoid obstacles in your path.
- Ergonomic injuries result from performing tasks with too much repetition, force, or awkward position. Ergonomic injuries include strains and back injuries. Learn about ergonomic hazards and how to prevent this type of injury.
- Scratches, lacerations, and needlesticks can result in serious health consequences. Attempt to find ways to eliminate your risk when working with sharp materials.

Report all accidents and injuries <u>immediately</u> to your supervisor or the business unit Environmental Health and Safety Manager or Specialist.

16. RELATED DOCUMENTS

- 1. Laboratory Quality Control Program
- 2. Hematology Slide Stainer Cytocentrifuge, Wescor Aerospray® Model 7151, SGAH / WAH Hematology SOP
- 3. Cytospin CSF/Body Fluid Slide Preparation, GEC Hematology SOP
- 4. Diff Quick Stain Kit, Hematology SOP
- 5. Cell Count Worksheet, AG.F12
- 6. Cell Chex Control and Cell Chex Differential Control Log, AG.F87

17. REFERENCES

Body Fluid Analysis procedure, Hematology BPT, QDHE749 v1.2

18. REVISION HISTORY

Version	Date	Section	Reason	Reviser	Approval
000	11/26/13		Update owner	L Barrett	R SanLuis
000	11/26/13	4	Add Methylene Blue diluting fluid	C Reidenauer	R SanLuis
000	11/26/13	6.3	Re-format to clarify process	L Barrett	R SanLuis
000	11/26/13	7.2	Remove model number of stainers	L Barrett	R SanLuis
000	11/26/13	7, 8	Remove use of non disposable hemacytometer.	C Reidenauer	R SanLuis
000	11/26/13	8.3	Add Methylene Blue as diluting fluid to all dilution steps	C Reidenauer	R SanLuis
000	11/26/13	8.5	Add process for count <10	L Barrett	R SanLuis
000	11/26/13	8.6	Add cholesterol crystal to step 1	L Barrett	R SanLuis
000	11/26/13	10.6	Add specific crystals to be reported	C Reidenauer	R SanLuis
000	11/26/13	16	Add forms, update SOP titles	L Barrett	R SanLuis
000	11/26/13	19	Remove forms	L Barrett	R SanLuis
000	11/26/13	Footer	Version # leading zero's dropped due to new EDCS in use as of 10/7/13.	L Barrett	R SanLuis
1	3/12/14	8.3	Correct 1:1 dilution to 1:2. Add dilution factors	C Reidenauer	R SanLuis
2	6/17/14	1, 8.6	Specify synovial fluid testing sites	L Barrett	R SanLuis
2	6/17/14	3.1	Add instruction for sending synovial fluid from GEC to SGAH	L Barrett	R SanLuis

19. ADDENDA

None