TRAINING UPDATE

Lab Location:GECDate Distributed:8/3/2015Department:CoreDue Date:8/31/2015Implementation:9/1/2015

DESCRIPTION OF PROCEDURE REVISION

Name of procedure:

Coulter LH750 Operation for Complete Blood Count and Reticulocyte Automated Tests GEC.H217 v4

Description of change(s):

Change is shown on page 18 (since there were no changes to the addenda, those pages are NOT attached)

Section	Reason
11.2	Reformat values to eliminate \leq and \geq signs

This revised SOP will be implemented on September 1, 2015

Document your compliance with this training update by taking the quiz in the MTS system.

Technical SOP		Approved d	lraft for training (version 4)
	Title	Coulter LH750 Operation for Complete Blood Count and Reticu	llocyte Automated Tests
	Prepared by	Robert SanLuis, Leslie Barrett	Date: 9/28/2009
	Owner	Robert SanLuis	Date: 1/23/2014

Laboratory Approval	Local Effective D	Pate:
Print Name and Title	Signature	Date
Refer to the electronic signature		
page for approval and approval		
dates.		

Review		
Signature	Date	
	Signature	

Quest Diagnostics	Title:	Coulter LH750 Operation for Complete Blood Count
Site: Germantown Emergency Center		and Reticulocyte Automated Tests

TABLE OF CONTENTS

1.	Test Information	
2.	Analytical Principle	
3.	Specimen Requirements	
4.	Reagents	
5.	Calibrators/Standards	
6.	Quality Control	
7.	Equipment And Supplies	
8.	Procedure	
9.	Calculations	
10.	Reporting Results And Repeat Criteria	
11.	Expected Values	
12.	Clinical Significance	
13.	Procedure Notes	
14.	Limitations Of Method	
15.	Safety	
16.	Related Documents	
17.	References	
18.	Revision History	
19.	Addenda	

1. TEST INFORMATION

Assay	Method/Instrument	Local Code
Hemogram (WBC, RBC, HGB, HCT, MCV, MCH, MCHC, RDW PLT, MPV)		CBCND
Hemogram & diff (WBC,RBC,HGB,HCT,MCV,MCH,MCHC,RDW, PLT, MPV, differential)	Coulter Automated Hematology Analyzer,	CBC
Differential count only	LH750	DIFF
Platelet Count		PLTC
Reticulocyte Count		RETA

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 1 of 48 SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 2 of 48

Abbreviation	Term	Abbreviation	Term
WBC	White Blood Cell	MCHC	Mean Corpuscular Hemoglobin
RBC	Red Blood Cell		Concentration
HGB	Hemoglobin	RDW	Red Cell distribution Width
HCT	Hematocrit	DIFF	Differential Count
MCV	Mean Cell Volume	PLT	Platelet
MCH	Mean Corpuscular	MPV	Mean Platelet Volume
	Hemoglobin		
RETIC	Reticulocyte Count		

Department	
Hematology	

2. ANALYTICAL PRINCIPLE

CBC

The Coulter principle employs electronic counting and sizing of particles using the LH 750 Series Hematology analyzers. WBC Differential analysis and classification are based on simultaneous measuring of cell volume, high frequency conductivity and laser light Scatter. Hemoglobin, released by hemolysis, is converted to a stable cyanide containing pigment and measured by photometric absorbance.

Reticulocyte

Red blood cell (*RBC*) RNA is stained with the vital stain new methylene blue. The dye precipitates the RNA found in reticulated RBC. Hemoglobin is removed from the RBC leaving the precipitated dye-RNA complex by adding a sulfuric acid solution. Reticulocyte percent and number are measured by analysis of the total RBC population for volume, conductivity and light scatter.

2.1 Determination of Parameters

Type of Measurement	Parameter	Source of Data
Direct	RBC (Red Blood Cell)	Coulter principle
	WBC (White Blood Cell)	Coulter principle
	HGB (Hemoglobin)	Photometric absorbance
	MCV (Mean Cell Volume)	Coulter principle
	PLT (Platelet)	Coulter principle
	Automated Differential, five-part	Light scatter, volume &
	_	conductivity (VCS technology)
	RET% (Reticulocyte)	VCS Technology
Derived from	RDW (RBC Distribution Width)	RBC Histogram
Histograms	MPV (Mean Platelet Volume)	PLT Histogram

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 3 of 48

Quest Diagnostics Site: Germantown Emergency Center

Type of Measurement	Parameter	Source of Data
	NRBC%	WBC Histogram and VCS
		technology
Calculated	HCT (Hematocrit)	$HCT = \underline{RBC \times MCV}$
		10
	MCH (Mean Corpuscular	$MCH = \underline{HGB \times 10}$
	Hemoglobin)	RBC
	MCHC (Mean Hemoglobin	$MCHC = HGB \times 100$
	Concentration)	HCT
	DIFF # parameters	DIFF as % x WBC
		(i.e. 0.77 x 5800)
	Absolute Neut	(Neut% + Band% + Meta% +
		Myelo% + Promyelo%) X WBC
	Absolute Lymph	(Lymph% + Reactive Lymph%)
		X WBC
	Absolute Monocytes	Mono% X WBC
	Absolute Eosinophils	Eos% X WBC
	Absolute Basophils	Baso% X WBC

3. SPECIMEN REQUIREMENTS

3.1 Patient Preparation

Component	Special Notations
Fasting/Special Diets	Not applicable
Specimen Collection and/or Timing	None defined
Special Collection Procedures	None defined

3.2 Specimen Type & Handling

Criteria	•		
Type -Preferred	K3EDTA or K2EDTA Who	K ₃ EDTA or K ₂ EDTA Whole Blood	
-Other Acceptable	Sodium Citrate - for platel	et counts only	
Collection Container	Lavender Top Tube		
	Tri-Potassium or Di-Potass	sium EDTA Anti	coagulant
Volume	Tube Minimum Optimum		
	K ₃ EDTA or K ₂ EDTA	1.0mL	Full tube
	(non-pediatric)		
	Pediatric K ₃ EDTA or 0.5mL Full tube		
	K_2EDTA tube		
	Microtainer tube 0.5mL n/a		
Transport Container	Same as above. Transport at room temperature or refrigerated.		
and Temperature	-		•

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 4 of 48

Stability & Storage		perature (18-2		
Requirements	Refrigerated: After analysis, specimens are stored for a			
	minimum of 2 days at 2-8°C.			
	Frozen (-20°C and below): Not Acceptable			
Timing Considerations	N/A			
Specimen Quality Table	Condition	Slight	Moderate	Marked
	Icterus	ОК	OK	Orange-Brown = <i>see</i> <i>section 13.8</i>
	Hemolysis	Slight pink OK	Pink OK	Cherry Red Unacceptable
	Lipemia	OK	OK	Milky = see section 13.8
Other Interfering Specimens Factors	CBC Indicated by CBC results (<i>see Addendum 2</i>) Fibrin, bacterial contamination, platelet clumps, abnormal			
	proteins, cold agglutinins, extreme temperature conditions, resistant hemoglobin, abnormal chemistries and specimens older than 48 hours.			
	RETIC			
				cyte inclusions that stain
	by new methylene blue dye, some hemoglobinopathies (SS, SC), and specimens older than 72 hours.			
A 47 4 75 1 6				
Actions to Take for	Conditi		de	Comment
Rejected Specimens	QNS	QNS	~	ity not sufficient to
Message Codes & Notes	(Less than the			m test.
	minimum vo		•	y caregiver.
	in Section 3.			ment in the LIS)
	Clotted	CLT		men is clotted, unable to
				m test.
				y caregiver.
	<i>a</i> .	1. 1. 1. 1.		ment in the LIS)
	Spurious res			ole interfering substance.
	that will not		or	
	duplicate	UNS		isfactory specimen.
				y caregiver.
	<u> </u>		1	ment in the LIS)
	Gross hemo	lysis HM		edly hemolyzed.
			Notify	v caregiver.
				ment in the LIS)

4. REAGENTS

Refer to the Material Safety Data Sheet (MSDS) supplied with the reagents for complete safety hazards. Refer to the section in this procedure covering "SAFETY" for additional information.

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 5 of 48

4.1 Reagent Summary

Reagents	Stability (Opened)	Supplier & Catalog Number	Size
Lyse S III diff	60 days	Beckman Coulter - Cat # 8546796	5 Liter
Coulter Clenz	90 days	Beckman Coulter - Cat # 8546931	10 Liter
LH 700 Series Diluent	60 days	Beckman Coulter - PN # 8547194	20 Liter
LH 700 Series PAK	60 days	Beckman Coulter - PN # 8547195	N/A
LH 700 Series Retic PAK	60 days	Beckman Coulter - PN # 8547196	N/A

Title:

4.2 Reagent Preparation and Storage

NOTES: Date and initial all reagents upon opening. Each container must be labeled with (1) substance name, (2) lot number, (3) date of preparation, (4) expiration date, (5) initials of tech, (6) any special storage instructions; check for visible signs of degradation.

Refer to the Material Safety Data Sheet (MSDS) for a complete description of hazards. If a specific hazard is present, it will be noted in this procedure when the hazard is first encountered in a procedural step.

Reagent	t Lyse S III diff, LH 700 Series Diluent, LH 700 Series Retic PAK	
Storage	2-30°C	
Stability	Stable (when unopened) until expiration date on label.	
Preparation All reagents are received ready for use.		

Reagent	Coulter Clenz, LH 700 Series PAK
Storage	2-25°C
Stability	Stable (when unopened) until expiration date on label.
Preparation	All reagents are received ready for use.

4.3 Diluents and lysing agents should be checked to be sure that no interferences are present. Performing a background count is an effective way to detect interference. Daily start up process insures that all diluent, lyse and reagents on board have been background checked. If reagents are changed after initial start up, another start up is required to comply. Each time the diluent is changed a background check is performed to insure no bubbles or contamination are introduced that could compromise patient testing. Document all reagent changes/background checks as specified in addendum 7.

5. CALIBRATORS/STANDARDS

Form revised 7/01/0

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 6 of 48

5.1 Calibrators/Standards Used

Calibrator	Supplier & Catalog Number
Coulter [®] S-Cal [®] Calibrator Kit	Beckman Coulter, PN 7508116-A

Caution: Calibrator contains sodium azide (<0.1 %). Contains potentially biohazardous materials. Use with good laboratory practices to avoid skin/eye contact or ingestion. Consult MSDS for a complete list of hazards

5.2 Calibrator Preparation and Storage

NOTE: Date and initial all calibrators upon opening. Each container should be labeled with (1) substance name, (2) lot number, (3) date of preparation, (4) expiration date, (5) initials of tech (6) any special storage instructions; check for visible signs of degradation.

Calibrator	Coulter [®] S-Cal [®] Calibrator Kit
Preparation	Bring to room temperature prior to testing. Use within one hour.
Storage/Stability	Store refrigerated (2-8°C). Use within expiration date from manufacturer. For further details refer to the package insert. Check for visible signs of degradation prior to use, i.e. color change or clotting.

5.3 Calibration Procedure

Criteria	Special Notations
Frequency	At least every 6 months, and when indicated by the following:
	 New set of apertures is installed.
	 New blood sampling valve is installed.
	New electronics are installed.
	 When multiple levels of commercial controls are consistently out or biased for one or more parameters.
	NOTE: Calibration is performed in the closed mode Calibration must be verified for both sampling modes, opened and closed (<i>cap-piercer</i>).
	When any parameter is adjusted, the change must be made or verified for both sampling modes.

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 7 of 48 SOP ID: GEC.H217 SOP Version #: 4

Quest Diagnostics

Site: Germantown Emergency Center

CONFIDENTIAL: Authorized for internal use only Page 8 of 48

Title:	Coulter LH750 Operation for Complete Blood Count
	and Reticulocyte Automated Tests

Criteria	Special Notation	S
Calibration Preparation	 Before Calibration: Has instrument had PM in the last 6 months (<i>Consult Supervisor</i>) Verify all routine maintenance is up-to-date. Clean the Baths. Perform shutdown. Ensure you have sufficient supply of reagents to complete the procedure. Perform Reproducibility: I-lf the CV% for any parameter is greater than those listed; you might have an instrument problem. Call your Coulter Representative. Perform Carryover Check: (Validate carryover (%) for each parameter against manufacturer acceptability guidelines; if exceeded, call your Coulter Representative. If all of the above are determined to be acceptable, then proceed with S-Calibration. Otherwise, correct the deficiency and repeat the reproducibility & carryover procedures. Follow the S-Cal preparation, handling, and procedural instructions. 	
Tolerance	IF	Then
Limits	If results fall within the specifications, if calibration status is displayed as acceptable and Quality Control (QC) values are within acceptable limits.	Proceed with analysis.
	If results fall outside of specifications and the calibration status is displayed as failed or the QC values are outside acceptable limits. If repeat calibration fails,	Troubleshoot the assay and/or instrument and repeat the calibration. Contact Beckman Coulter
		for technical support.
Procedure	Follow instructions in the current S-Cal pack LH750 Calibration Screen Help Procedure.	kage and/or refer to the

5.4 Documentation

All Calibration and/or Calibration Verification processes (with commercial material) are documented. Calibration and/or Calibration Verification processes are signed and dated by performing staff. Calibration and/or Calibration Verification documents are reviewed, dated, and signed by supervisory staff. Calibration and/or Calibration Verification documents are QC documents and maintained according to guidelines published in the Quest Diagnostics *Records Management Program Reference Guide*.

6.1 Controls Used

Caution: Controls contain sodium azide (<0.1 %). Potential biohazardous materials. Use with good laboratory practices to avoid skin/eye contact or ingestion. Consult MSDS for a complete list of hazards.

Control	Supplier & Product Number
5C Abnormal I	Beckman Coulter # 7547116
5C Normal	4 x 3.3 mL each level
5C Abnormal II	
RETIC – C (Level I, II, III)	Beckman Coulter #7547125
	3 x 3.3 mL each level
Latron 1 (primer)	Beckman Coulter # 7546915
	5 x 16 mL each
Latron 2 (control)	Beckman Coulter # 7546914
	5 x 16 mL each

6.2 Control Preparation and Storage

NOTE: No control preparation is necessary. Follow instructions in the current control package insert for control handling. Date and initial all controls upon opening. Each container should be labeled with (1) substance name, (2) lot number, (3) date of preparation, (4) expiration date, (5) initials of tech, and (6) any special storage instructions; check for visible signs of degradation. Follow the QC Program when checking new lots or shipments of QC material prior to use.

Control	Storage & Stability
5C Abnormal I	• Store refrigerated at 2-8°C.
5C Normal	 Bring to room temperature prior to testing.
5C Abnormal II	Observe expiration date.
	• Open vial stability: 13 days or 13 uses.
Latron 1 (primer)	• Store at 2-30°C.
	 Bring to room temperature prior to testing.
	Observe expiration date.
	Open vial stability: 30 days
Latron 2 (control)	• Store at 2-30°C.
	 Bring to room temperature prior to testing.
	Open vial stability : 30 days
RETIC-C (Levels I, II, III)	• Store refrigerated at 2-8°C.
	 Bring to room temperature prior to testing.
	Observe expiration date.
	Open vial stability: 15 days

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 9 of 48

6.3 Frequency

- A. All three commercial control levels of 5C and Retic must be tested each shift. Data from this control run is part of the Coulter eIQAP program.
- B. Latron Control will be tested as part of start-up procedure only. Refer to Coulter LH750 help screen for Latron Control for procedure.

C. Multi-mode sampling

- Each day both closed-mode and open-mode sampling using the 5C controls must be performed, as per CLIA and CAP requirements.
- Typically, most testing is done in closed mode.
- Commercial Controls must be tested in open and closed mode on each shift.
- D. See Addendum 4 for the Daily Quality Control Schedule for the Beckman Coulter LH750. (*Note: Due to the QC schedule the 5C on the LH750 gets sampled 11-12 times at the most before it is depleted.*)

6.4 Tolerance Limits

The laboratory's QC program is set up with mean values provided in the package insert for the respective lot# of QC that have been verified per laboratory procedure. For tracking QC in the LH database, Standard Deviations (*SDs*) used for acceptable limits must not exceed the Max SD or the SDc (*determined from the Coulter QC Range*), whichever is greater.

QC Level	Parameter	Max. Total Allowable Error	Max CV, %	Max SD	SDc = Coulter Range / 3
Abnormal I	WBC	+/- 15%	3.0	0.60	0.37
	RBC	+/- 6%	1.2	0.05	0.04
	Hemoglobin	+/- 7%	1.4	0.18	0.13
	Hematocrit	+/- 6%	1.4	0.52	0.63
	MCV	+/- 6%	1.2	1.0	1.0
	Platelet Count	+/- 25%	5.0	17	13
	Neutrophils (%)	+/- 3SD	1.5	1.0	1.67
	Lymphocyte (%)	+/- 3SD	3.0	0.43	1.67
	Monocytes (%)	+/- 3 SD	4.0	0.6	1.0

QC Level	Parameter	Max. Total Allowable Error	Max CV, %	Max SD	SDc = Coulter Range / 3
Normal	WBC	+/- 15%	3.0	0.27	0.27
	RBC	+/- 6%	1.2	0.06	0.06
	Hemoglobin	+/- 7%	1.4	0.23	0.20
	Hematocrit	+/- 6%	1.4	0.67	0.90
	MCV	+/- 6%	1.2	1.0	1.0

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 10 of 48

Platelet Count	+/- 25%	5.0	8.7	8.5
Neutrophils (%)	+/- 3SD	1.5	0.8	1.67
Lymphocyte (%)	+/- 3SD	3.0	0.79	1.67
Monocytes (%)	+/- 3 SD	5.0	0.5	1.0

QC Level	Parameter	Max. Total Allowable Error	Max CV, %	Max SD	SDc = Coulter Range / 3
Abnormal II	WBC	+/- 15%	3.0	0.10	0.13
	RBC	+/- 6%	1.2	0.022	0.027
	Hemoglobin	+/- 7%	1.4	0.07	0.10
	Hematocrit	+/- 6%	1.4	0.21	0.50
	MCV	+/- 6%	1.2	1.0	1.0
	Platelet Count	+/- 25%	5.0	3.0	5.0
	Neutrophils (%)	+/- 3SD	2.4	1.0	1.67
	Lymphocyte (%)	+/- 3SD	2.2	1.0	2.0
	Monocytes (%)	+/- 3 SD	8.0	0.7	1.0

QC Level	Parameter	Max. Total Allowable Error	Max CV %	Max SD	SDc = Coulter Range / 3
Level I	Retic	+/- 3SD	15.4	0.17	0.2
Level II	Retic	+/- 3SD	3.2	0.1	0.4
Level III	Retic	+/- 3SD	4.2	0.4	0.8

Maximum total allowable error is based on CLIA 88 criteria, which also are the CAP evaluation criteria.

Max CV is established by QC BPT to be consistent with recommended QC rules (see part c, below) in order to detect changes in the assay that would cause an error that exceeded the maximum allowable total error.

Max SD is determined by multiplying the maximum CV * assay value. The assay value changes slightly for each new lot, however, it is expected that the precision will remain constant for each new lot of material.

SDc = Coulter Range / 3. This is the value of the SD that would match Coulter Range if we use 3 SD QC limits. In some cases, this SD is very similar to the Max SD, while in other cases, these values differ.

RUN REJECT CRITERIA: The QC procedure for this assay will employ **the 1-3S Westgard rule.** The 3SD limit will be identical to the Coulter QC limit. Runs where this QC rule is violated will be rejected. QC repeated and lookback performed and documented for each out of range parameter.

Each time one control exceeds the criteria for rejection, the run is out of control *(failed)*, and patient results must not be reported. The steps on the QC flow chart must be followed to resolve the problem.

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 11 of 48 Quest Diagnostics Site: Germantown Emergency Center

Corrective Action

- Rejected runs must be effectively addressed by corrective action. Steps taken in
 response to QC failures must be documented. Patient samples in failed analytical
 runs must be reanalyzed according to the Laboratory QC protocol. Supervisor
 may override rejection of partial or complete runs only with detailed
 documentation that follows criteria that is approved by the Medical Director.
- Corrective action documentation must include the following: QC rule(s) violated, the root cause of the problem, steps taken to correct the problem, how patient samples were handled, and the date and initials of the person recording the information.

Review of QC

- Upon weekly and monthly review of QC, if the QC is showing a shift or a drift investigate the cause for the imprecision and document corrective actions. Monthly QC files are printed, compiled in a log and reviewed by the department supervisor/manager or designee.
- All daily shift QC must be submitted with 5 days of outdating to Coulter's eIQAP program for interlaboratory comparison.

6.5 Review Patient Data

Review patient results for unusual patterns, trends or distributions, looking for an unusually high percentage of abnormal results.

6.6 Documentation

- QC results for each control level and each test mode for an instrument are recorded and stored in the instrument.
- QC records are printed monthly and maintained and available for a minimum of two (2) years.
- Patient results are reviewed and released to the patient file via the LIS system.

6.7 Quality Assurance Program

- Refer to the QA / QC policy for other quality assurance activities applicable to this procedure.
- Training must be successfully completed and documented prior to performing this test.
- The laboratory participates in CAP proficiency testing.

6.8 Other QA Tools – XB Moving Averages

XB moving averages should be utilized with caution for specific patient populations as XB results can be skewed.

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 12 of 48

IF	THEN
XB shows a characteristic pattern of an upward or downward drift	 Check patient population to eliminate the possibility of an increased number of patients with a specific disease state. If this is found, then continue to run instrument. Check patient population, if an increased number of patients with a specific disease state is not found, check commercial material for similar trends/shifts.
If commercial control material is in control	The instrument can continue to be operated.
If the commercial control material shows a similar trend/shift	Troubleshoot the instrument and calibrate if necessary.

Hints For XB Troubleshooting				
When Measurement Then				
	MCV	MCH	MCHC	
HGB Decreased	No change	Decreased	Decreased	
HGB Increased	No change	Increased	Increased	
RBC Decreased	Increased	Increased	No change	
RBC Increased	Decreased	Decreased	No change	
HCT Decreased	Decreased	No change	Increased	
HCT Increased	Increased	No change	Decreased	

7. EQUIPMENT and SUPPLIES

7.1 Assay Platform

Brand	Instrument Model	Distributor
Beckman Coulter	LH750	Beckman-Coulter, Inc. Technical Support 1-800-526-7694

7.2 Equipment

Item	Supplier and Catalog Number
Microscope	None specified
Slide Stainer	None specified
Refrigerator, 2-8°C	None specified
Printer	None specified

7.3 Supplies

Other Items	Supplier and Catalog Number
Biohazard wipes	None specified
Immersion Oil	None specified

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 13 of 48

Fo

Quest Diagnostics Site: Germantown Emergency Center

Coulter LH750 Operation for Complete Blood Count and Reticulocyte Automated Tests

Applicator sticks	None specified
Glass Slides	None specified
Lens Paper	None specified
Optical lens cleaner	None specified

8. PROCEDURE

NOTE: For all procedures involving specimens, buttoned lab coats, gloves, and face protection are required minimum personal protective equipment. Report all accidents to your supervisor.

Title:

The package insert for a new lot of kits must be reviewed for any changes before the kit is used. A current Package Insert is included as Related Documents.

8.1 Preventive Maintenance

Daily and weekly maintenance will be performed and documented on the maintenance log by assigned personnel. Please refer to the LH750 Help Screen.

8.2 Start-up/Shut down Procedure

Refer to the LH750 Help Screen.

8.3 Loading Cassettes

Prior to loading cassettes, mix specimens on a mechanical rocker for 5-10 minutes

Step	Action			
1.	IF: Specimen received in	THEN: Load cassettes making sure all bar		
	standard tube containing optimum	code labels are positioned appropriately.		
	amount.			
2.	IF: Specimen received in	THEN: Run the specimen in the open mode.		
	Microtainer tube or contains			
	minimum amount of blood.			
3.	Place the cassettes on the loading bay. The instrument starts automatically when			
	the cassette is placed on the loading bay.			
4.	When load is completed, remove cassettes from instrument.			

8.4 Review of Patient Result

Step	Action	
1.	Using function OEM in the LIS system, review each patient result before it is	
	released.	
2.	Check for delta checks and critical values.	
3.	Call and document all critical values	

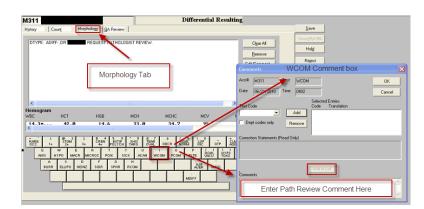
SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 14 of 48

4.	Release all values that do not need to be repeated for delta values, critical values,
	or are not flagged on the LH print out for review.
5.	Pull all specimens that need rerun or slide scan as indicated in Addendum 2.
6.	Store normal specimens.
7.	Rerun tests (those needing repeat analysis as indicated in Addendum 2
8.	For those specimens that are flagged for scan smear or perform manual diff,
	release the hemogram and "Hold" the diff. Refer to Addendum 3
9	Make slide for scan smear. Refer to Addendum 8

8.5 Supervisor (or designee)/Pathologist slide review

Abnormality	Supv.	Path.
Prolymphs > 5%	Х	
Reactive and/or atypical lymphocytes >20%	Х	
Bands > 25%	Х	
Meta/Myelos/Promyelo >10%	Х	
Any blast cell	Х	Х
Any unidentifiable cell	Х	Х
Any parasite or micro organism (reviewed by microbiology also)	Х	
Lymphocyte $> 75\%$ in patients < 17 years of age	Х	
Lymphocyte $> 70\%$ in patients > 17 years of age	Х	Х

NOTE: The above guidelines are for new and recurring patients performed initially and over each subsequent hospital encounter (ED visit, OP visit or admission).


8.6 Handling and Resulting Pathologist Reviewed Slides

- A. Technician/Technologist will submit slides for pathologist review as follows:
 - 1. Ensure slide is of acceptable quality for pathology review; appropriate smear, adequate staining, and properly labeled.
 - 2. Cover-slip the slide
 - 3. Complete Pathologist Slide Review Request form
 - 4. Attach analyzer print-out (Scatter Plot)
 - 5. Print patient cumulative report (LIS procedure SGAH.LIS22 or WAH.LIS22)

B. Technician/Technologist will enter Pathologist comments in LIS as follows:

- 1. The pathologist will write comments on the Pathology Review Request form.
- The technician/technologist will enter the pathologist's interpretation in the LIS under Differential Result Entry – Morphology Tab - WCOM (See Example Below)

CONFIDENTIAL: Authorized for internal use only Page 15 of 48 Quest Diagnostics Site: Germantown Emergency Center Title: Coulter LH750 Operation for Complete Blood Count and Reticulocyte Automated Tests

- In the comment box enter, "Differential reviewed by Dr. (name of pathologist)" along with pertinent comments as indicated by the reviewing pathologist. Note: <u>All comments must be immediately preceded by a semicolon</u>.
- 4. Proof read the comment for grammatical and spelling errors then select "Add to List" the button directly above the comment will highlight once text is entered. Note: The comment may be typed into a word document, checked for grammatical and spelling errors, then copied from the word document and pasted into the comment field.
- 5. Review the comment under the QA Review Tab prior to saving the result.

9. CALCULATIONS

MCV, MCH, MCHC and absolute differential results are released from the LH analyzer.

The absolute differential results are released from either the analyzer or the LIS, depending upon the differential type:

- Automated differentials have the absolute values calculated by the LH750.
- · Manual differentials have the absolute values calculated by the LIS.

There are instances when results are above assay range or interfering substances require manual correction of assay parameters. These calculations are verified at least annually as well as whenever a change is made to the LIS that could impact a calculation. See Addendum 5 for calculation formulas.

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 16 of 48

10.1 Interpretation of Data

None required

10.2 Rounding

Any result rounding is performed at the interface level.

10.3 Units of Measure

Parameter	Units
WBC	x10(3)/mcL or K/µL
RBC	10 ⁶ /μL or M/μL
HGB	g/dL
HCT	%
MCV	fL
МСН	pg
MCHC	g/dL
PLT	x10(3)/mcL or K/µL
MPV	fL
RDW	%
Differential Absolute Values	Cells/µL or x10(3)/mcL
Differential Counts	%
Reticulocyte	%

10.4 Clinically Reportable Range (CRR)

Parameter	Clinical Reportable Range
WBC	$0-800 \ge 10^3$
RBC	$0-16.00 \ge 10^6$
HGB	0-25
НСТ	Calculated and limited by direct measurement reportable ranges
MCV	0-150
MCH	Calculated and limited by direct measurement reportable ranges
MCHC	Calculated and limited by direct measurement reportable ranges
PLT	$0-3,000 \ge 10^3$
% NEUTS	0-100
% LYMPHS	0-100
% MONO	0-100
% EOS	0-100
% BASO	0-100
Retic, automated	0.0-30.0%

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 17 of 48

10.5 Repeat Criteria and Resulting

Refer to Addendum 2

Parameter	Repeat Tolerance Limits
WBC	± 0.8
RBC	± 0.25
HGB	± 0.6
HCT	± 1.7
MCV	± 3.0
MCH	± 1.2
MCHC	± 1.2
PLT	$\pm 10\%$
NE%	± 5.0
LY%	± 5.0
MO%	± 3.0
EO%	± 2.0
BA%	± 1.0

Title:

11. EXPECTED VALUES

11.1 Reference Ranges

Refer to Addendum 1

11.2 Critical Values

Parameter	Age	Critical Low	Critical High	Reference Units
HGB	1 month and older	<u>≤6.0</u> <mark><6.1</mark>	<u>≥ 20.0</u> ≥19.9	g/dL
HGB	0-29 days	<u>≤6.0</u> <mark><6.1</mark>	$\geq 24.0 > 23.9$	g/dL
WBC	all ages	<u>≤2.0</u> <2.1	<u>≥ 30.0</u> ≥29.9	x10(3)/mcL
Platelet	all ages	<u>≤ 30</u> <31	<u>≥ 900</u> <mark>>899</mark>	x10(3)/mcL

11.3 **Priority 3 Limit(s)**

None established

12. CLINICAL SIGNIFICANCE

- CBC The quantitative and qualitative analysis of the cellular elements of blood will identify imbalance between cell production, cell release, cell survival, or cell loss. This information increases the accuracy and specificity of diagnosis based on pathogenesis and is also used to monitor the effectiveness of therapy.
- Automated Differential The Differential distribution of white blood cells will, when correlated with absolute white cell count, identify imbalances between cell production, cell release, cell survival and/or cell loss. This information increases the accuracy and

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 18 of 48 specificity of diagnosis based on pathogenesis and is also used to monitor the effectiveness of therapy.

- **Platelet Count** Platelets must be present in adequate numbers and have proper function to aid in hemostasis. A normal bleeding time is dependent on adequate platelet number and function.
- **Reticulocyte Count** The enumeration of reticulocytes provides an effective means of determining red cell production and regeneration. Elevation is seen in patients with hemolytic anemia, hemorrhage (acute and chronic), treatment of iron-deficiency anemia and megaloblastic anemias and uremia. Decreased counts may be seen in aplastic anemia, aplastic crisis of hemolytic anemias and ineffective erythropoiesis as seen in thalassemia, pernicious anemia and sideroblastic anemia.

13. PROCEDURE NOTES

- FDA Status: FDA Approved/cleared
- Validated Test Modifications: None

13.1 Manual versus Automated Differential Counts – 95% Comparison Confidence Limits

- This table can be used for two purposes:
- To show the tolerance limits of a manual differential at various levels of counting (100-cell diff, 200-cell diff, etc.)
- To determine the tolerance allowed for a technologist performing a 100-cell diff to verify an automated differential with a 95% confidence limit. (*If the instrument reports 20% monocytes, the technologist would be expected to find 12-30% monocytes in the 100-cell differential count in order to verify the instrument count.*)
- "A" is the percentage of cell type counted, e.g. lymphocytes.
- "N" is the size of the manual differential performed.

A = % of a cell type	N = 100	N = 200	N = 500	N = 1000
0	0 - 4	0 - 2	0 - 1	0 - 1
1	0 - 8	0 - 4	0 - 3	0 - 2
2	0 - 8	0 - 6	0 - 4	1 - 4
3	0 - 9	1 - 7	1 - 5	2 - 5
4	1 - 10	1 - 8	2 - 7	2 - 6
5	1 - 12	2 - 10	3 - 8	3 - 7
6	2 - 13	3 - 11	4 - 9	4 - 8
7	2 - 14	3 - 12	4 - 10	5 - 9
8	3 - 16	4 - 13	5 - 11	6 - 10
9	4 - 17	5 - 14	6 - 12	7 - 11
10	4 - 18	6 - 16	7 - 13	8 - 13
15	8 - 24	10 - 21	11 - 19	12 - 18
20	12 - 30	14 - 27	16 - 24	17 - 23
25	16 - 35	19 - 32	21 - 30	22 - 28

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 19 of 48 Quest Diagnostics Site: Germantown Emergency Center

A = % of a cell type	N = 100	N = 200	N = 500	N = 1000
<u>30</u>	21 - 40	23 - 37	26 - 35	27 - 33
35	25 - 46	28 - 43	30 - 40	32 - 39
40	30 - 51	33 - 48	35 - 45	36 - 44
45	35 - 56	37 - 53	40 - 50	21 - 49
50	39 - 61	42 - 58	45 - 55	46 - 54
55	44 - 65	47 - 63	50 - 60	51 - 59
60	49 - 70	52-67	55 - 65	56 - 64
65	54 - 75	57 - 72	60 - 70	61 - 68
70	60 - 79	63 - 77	65 - 74	67 - 73
75	65 - 84	68 - 81	70 - 79	72 - 78
80	70 - 88	73 - 86	76 - 84	77 - 83
85	76 - 92	79 - 90	81 - 89	82 - 88
90	82 - 96	84 - 94	87 - 93	87 - 92
91	83 - 96	86 - 95	88 - 94	89 - 93
92	84 - 97	87 - 96	89 - 95	90 - 94
93	86 - 98	88 - 97	90 - 96	91 - 95
94	87 - 98	89 - 99	91 - 96	92 - 96
95	88 - 99	90 - 98	92 - 97	93 - 97
96	90 - 99	92 - 99	93 - 98	94 - 98
97	91 - 100	93 - 99	95 - 99	95 - 98
98	92 - 100	94 - 100	96 - 100	98 - 99
99	94 - 100	96 - 100	97 - 100	98 - 100
100	96 - 100	98 - 100	99 - 100	99 - 100

Title:

13.2 WBC Estimate

IF	Then
Using the 50X objective	Calculate the average WBC in 10 fields. Multiply by
	3,000.
In the presence of a cellular	Investigate the cause.
interference flag perform a	Poor area on smear chosen to do estimate - repeat the
WBC estimate. If WBC	estimate.
estimate does not equal the	Platelet clumps present - remove the PLT Count and add
Coulter WBC within ±20%	CLMP to the report
	NRBCs and/or megakaryocytes or giant platelets present -
	correct the WBC. From the Histogram keyboard enter the
	UWBC count. Perform the manual diff (refer to Addendum
	8) and correct the WBC.
	No apparent cause - Have the test redrawn.

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 20 of 48

13.3 Platelet Estimate

IF	Then
In the presence of a platelet	Count the PLT in each of 10 microscopic fields in areas of
flag, a platelet estimate	the slide where the RBCs are evenly dispersed.
must be performed. Using	Divide the total # of platelets by 10 to establish the mean
the 100X objective	and multiply by 20,000.
The Coulter platelet count	Repeat the platelet estimate and/or platelet count.
and the platelet estimate do	If counts still do not agree, consult the supervisor or
not agree within $\pm 20\%$	designee.

13.4 RBC Morphology

- Microcytosis, Macrocytosis and Anisocytosis will be quantitated using the LH criteria. The morphology will be quantitated by smear evaluation.
- All clinically significant findings such as specific cell types, inclusions, polychromasia, etc., will be reported from the smear evaluation.

IF	Then
NO clinically significant findings to	Result as Normal.
be added to a patient report.	
ANY additions to the patient report,	Report all clinically significant findings using
such as RBC morphology, cell	the Diff key board in the LIS.
differential, PLT morphology, etc.	

 For consistent morphological reporting, the following criteria are recommended. They serve only as a guideline for evaluating slight, moderate, or marked degrees of abnormal morphology.

Variation	Mean Range per 10 Fields (100x) of RBCs	Then
Poikilocytosis	0	Normal
-	1-5	1+
	6-15	2+
	Over 15	3+
Anisocytosis	0-5	Normal
	6-15	1+
	15-30	2+
	Over 30	3+
Polychromasia	0-2	Normal
	3-4	1+
	5 - 6	2+
	Over 6	3+
Hypochromia	0-5	Normal
	6-15	1+
	16-30	2+
	Over 30	3+

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 21 of 48 Quest Diagnostics Site: Germantown Emergency Center

Listed below is a guideline for abnormal shapes based on mean range/10 fields of RBCs.

Elster dello il la galacime for achormar shapes caser on metal fange fo metas of filb co.						
Abnormal Shape	Normal	1+	2+	3+		
Spherocyte, Acanthocyte Sickle cell, Rouleaux	0	1-5	6-15	Over 15		
Helmet cell	0-1	1-5	6-15	Over 15		
Tear drop, Target cell, Schistocyte, Ovalocyte,	0-1	2-5	6-15	Over 15		
Elliptocyte, Burr cell, Stomatocyte, Blister cell						

13.5 Potential Causes of Erroneous Results with Automated Cell Counter

Parameter	Causes of Spurious Increase	Causes of Spurious Decrease
WBC	Cryoglobulin, Cryofibrinogen, Heparin,	Clotting, Smudge Cells,
	Monoclonal Proteins, Nucleated RBC,	Uremia, Immunosuppressants
	PLT Clumps, Lyse-resistant RBC	
	NOTE: The LH is able to "gate-out"	
	interferences <35fL in size and provides a	
	"Corrected WBC." The "uncorrected	
	WBC" is available in the comment field for	
	purposes of review. In the absence of a	
	"Cellular Interference" flag, Beckman	
	Coulter believes the WBC to be correct -	
	however, in the presence of interferences	
	WBC values should always be compared to WBC estimates	
RBC	Cryoglobulin, Cryofibrinogen, Giant	Auto-agglutination, Clotting,
	PLTs, High WBC ($>50,000/\mu L$)	in vitro Hemolysis, Microcytic
		RBC
Hemoglobin	Carboxyhemoglobin (>10%),	Clotting, Sulfhemoglobin
	Cryoglobulin, Cryofibrinogen, in vitro	
	Hemolysis, Heparin, High WBC	
	(>50,000/µL), Hyperbilirubinemia,	
	Lipemia, Monoclonal Proteins	
Hematocrit	Cryoglobulin, Cryofibrinogen, Giant	Autoagglutination, Clotting, in
(Automated)	PLTs, High WBC (>50,000/ μ L),	vitro Hemolysis, Microcytic
· · · ·	Hyperglycemia (Glucose >600 mg/dL)	RBC
MCV	Cryofibrinogen, Autoagglutination,	Cryoglobulin, Giant Platelets,
	High WBC (>50,000/µL),	in vitro Hemolysis, Microcytic
	Hyperglycemia, Reduced RBC	RBC, Swollen RBC
	Deformability	
MCH	High WBC (>50,000/µL), Spuriously	Spuriously Low HGB,
	High HGB, Spuriously Low RBC	Spuriously High RBC
MCHC	Auto-agglutination, Clotting, Lipemia,	High WBC (>50,000/µL),
	in vitro Hemolysis, Spuriously High	Spuriously Low
	HGB, Spuriously Low HCT	HGB, Spuriously High HCT

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 22 of 48

Parameter	Causes of Spurious Increase	Causes of Spurious Decrease
Platelets	Cryoglobulin, Cryofibrinogen,	Clotting, Giant PLT, Heparin,
	Hemolysis (in vitro and in vivo),	PLT Clumping, PLT
	Microcytic RBC, RBC Inclusions, WBC	Satellitosis
	Fragments	

13.6 Platelet Clumps

Platelet clumping represents agglutination rather than aggregation, as it is not prevented by inhibitors of the platelet release reaction. In addition to pseudo- thrombocytopenia, platelet agglutination may cause pseudoleukocytosis due to the counting of platelet clumps as leukocytes by automated analyzers. Thus, resolving the PLT clumping when possible improves the quality of result provided to the clinician.

When the platelet clump flag is noted check the specimen for a clots and fibrin. Vortex the EDTA specimen for 1-2 minutes, then rerun the specimen.

If no clumps are seen following vortexing and the platelet count has increased, the count may be reported. However, exercise caution in the situation when only partial resolution of clumping is observed, even if the platelet count increases substantially.

If the post-vortex PLT count is normal, enter a comment that platelet clumping is present but the platelet count is adequate.

If	Then
If PLT count \leq 130 with significant	Remove the PLT count number and result with
PLT clumps found during slide scan.	the comment CLMP = <i>Clumped platelet</i>

13.7 Sodium Citrate for Platelet Count

Collection of a platelet count with Sodium Citrate anticoagulant is usually reserved for patients who are known to have a platelet clumping phenomena associated with EDTA anticoagulant. The specimen of choice is both an EDTA and a sodium citrate tube. The EDTA is used for the CBC results. The sodium citrate tube is used for the citrate Platelet count. Run samples as per the LH750 protocol. Multiply the Na citrate platelet count by 1.1 to correct for dilution effects.

13.8 MCHCs greater than 36.5 or less than 29.0

If the MCHC is ≤ 29.0 or ≥ 36.5 , it should be repeated on the LH750 to rule out random error. If MCHC is ≤ 29.0 a slide should be made and scanned to look for potential causes of spuriously low MCHC, i.e. marked sickle cells or target cells. If the MCHC is greater than 36.5, a slide should be made and examined as well as visual inspection of the sample to determine the integrity of the specimen. The smear review/ visual inspection should indicate to the technologist which category the specimen falls into – cold agglutinin, lipemia, hemolysis, icterus or the situation where the results are accurate due to the presence of spherocytes.

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 23 of 48 Quest Diagnostics Site: Germantown Emergency Center

IF	Then			
Spherocytes are noted	Report the MCHC with a comment reflecting the presence of			
on the slide scan	spherocytes as 1+, 2+ or 3+.			
Resistant	Specimens with lyse resistant RBCs should be repeated on dilution			
hemoglobin, marked	using bottled, distilled water. Prepare a 1:2 dilution with equal parts			
sickle cells or target		sit three minutes. Resuspend and		
cells noted on the		Using the HGB result, multiply the		
slide scan	corrected HGB to recalculate	corrected hemoglobin result. Use the		
If gignificant DDC		ter bath or heat block for 30 minutes		
If significant RBC clumping is noted on		ntinue warming and rerun every 15		
the slide scan.		after each run, not to exceed one hour.		
the shue sean.		slide for morphology evaluation		
	IF After Incubation	Then		
	The MCHC is within normal	Report results with the appropriate		
	range	comment: Specimen was prewarmed		
	Tunge	to 37°C to obtain results; Cold		
		agglutinin/cryoglobulin suspected.		
	The MCHC is still outside	Perform Plasma Replacement		
	36.5 after 1 hour incubation:	Procedure: See Addendum 6.		
	(irreversible cold			
	agglutinins)			
If hemolysis is	1	ual hemolysis. If gross hemolysis is		
suspected on the slide	observed, cancel the specimer	n with the appropriate comment: -HMT		
scan, i.e. schistocytes				
If lipemia or icterus is		ual lipemia /icterus. If observed		
suspected on the slide	perform a plasma hemoglobin blank. If there is sufficient specimen,			
scan.		on into a plastic specimen tube. Spin the		
		rpm. If the specimen is short, spin the s at 2000 rpm. In secondary mode run		
		Verify a "0" hemoglobin value. In the		
		sma portion of spun specimen to		
		obin blank value. Using the following		
	formula:			
	Correct Hgb = $OH - [PB x]$	(1 - HCT/100)]		
	Where OH = original h			
	PB = plasma hemoglobin blank			
	HCT = original hematocrit			
		ter the corrected HGB on the report and		
		la in addendum #5) and enter the		
		ent: "Results were obtained by repeat		
		plasma blank to eliminate interferences		
	caused by either WBCs, lipem	ua, or protein entities."		

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 24 of 48

13.9 Correction for Nucleated RBCs and/or Megakaryocytes and/or when a Cellular Interference flag is received.

1. Whenever the LH instrument gives a cellular interference flag, a slide WBC estimate has to be done. See section 13.2. If the estimate does not match within 20% of the LH WBC count a WBC correction has to be done. Use the following calculation if this correction has to be done manually.

The LH750 reported WBC is always "corrected" for presence of interfering substances <35 fL in size. The "uncorrected" WBC is available in the COMMENT field of the instrument print-out for review, if necessary. The instrument "corrected" value is the value reported in LIS by the instrument. If slide review indicates presence of >10nRBCs or megakaryocytes, the uncorrected WBC count must be used in the calculation to avoid overcorrection. Use LIS code **WNRBC** to append the following message to the WBC result: White blood cell count corrected for presence of nucleated red blood cells.

Corrected WBC = Uncorrected <u>WBC x 100</u> 100 + #NRBC's and/or megakaryocytes

- 2. Whenever the LH instrument flags for NRBCs, hold and scan the smear.
 - If no NRBC is seen on the smear, the Coulter LH NRBC count should be removed.
 - If a scan was verified within the previous 48 hours, there is no need to re-scan
 - A corrected WBC is only required as described in step 1 above.

13.10 Slide Preparation

When making a smear always check the specimen for clots. This can be done by visual inspection or by the use of an applicator stick when appropriate. Refer to Addendum 8 for smear preparation.

13.11 Coulter Repeats

(*See Addendum 2*) Results must be reported with the comment. REP = *RESULTS CONFIRMED, TEST REPEATED.*

13.12 SCAN Smear

Refer to Addendum 8 for Scan instructions.

13.13 Correction of RBC & HGB in the presence of a WBC count greater than 400,000.

a) Subtract the WBC count from the RBC count to obtain a corrected RBC Count.

- b) Spin an aliquot of specimen for 3-5 minutes at 1500 rpm.
- c) Remove an aliquot of the red cell portion, and dilute it 1:2 with LH Series Diluent.

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 25 of 48 Quest Diagnostics Site: Germantown Emergency Center

- d) Run the "RBC only" suspension as a sample on the Coulter to obtain an accurate MCH and MCV.
- e) Calculate the corrected HGB: Hgb = MCH x RBC (corrected) / 10
- f) Calculate the HCT: Hct = MCV x RBC (corrected) / 10
- g) Calculate the MCHC: MCHC = Corrected Hgb $\times 100$

Corrected Hct

13.14 Special Reticulocyte Precautions

Specimens with verify retic flag other than those listed in addendum 2 must be verified by a manual reticulocyte count. Refer the sample to the reference laboratory.

13.15 Dilutions

The following table lists the maximum dilutions necessary to comply with the **CRR** (See Section 10.4 for CRR values).

- Dilutions should be made with LH Series Diluent.
- For results greater than the CRR, report according to the chart.

Demonstern	Dilutions for CRR			
Parameter	LH750 Report as			
WBC	1:2	$>800 \text{ x } 10^3$		
RBC	1:2	>16.00 x 10 ⁶		
HGB	none	NA		
PLT	none	NA		

13.16 Alternative Procedures

None

14. LIMITATIONS OF METHOD

14.1 CBC-Line Linearity

- CBC-Line Linearity is an assayed material used to establish the Analytical Measurement Range and verify the calibration of the LH750. This product allows Quest Diagnostics to comply with CLIA 88 Regulations and CAP requirements.
- Analytical Measurement ranges should be performed at installation and when necessary to verify linearity.

Recommended Linearity Kit	Supplier	Fom
Beckman Coulter Lin-C Linearity Kit (Follow manufacturers requirements for storage and stability)	Beckman Coulter	n revised 7/01/01

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 26 of 48

14.2 Analytical Measurement Range (AMR)

Parameter	Analytical Measurement Range
rarameter	LH750
WBC	$0-400 \ge 10^3$
RBC	$0-8.00 \ge 10^6$
HGB	0-25
MCV	0-150
Reticulocyte	0.0 - 30.0 %
PLT	$0-3,000 \ge 10^3$

14.3 Precision

Recovered in the procedure validation package

Inter-Run				
Analyte	Level	Mean	1SD	CV%
WBC	LOW	1.15	0.08	6.90
	MID	20.01	0.18	0.90
	HIGH	94.57	1.28	1.36
PLATELET	LOW	4.82	0.48	10.06
	HIGH	647.29	20.69	3.20
HEMOGLOBIN	LOW	5.16	0.08	1.53
	HIGH	16.76	0.13	0.76

Intra-Run				
Analyte	Mean	1SD	CV%	
WBC	7.40	0.10	1.33	
RBC	4.87	0.03	0.62	
HEMOGLOBIN	15.21	0.09	0.62	
PLATELET	235.86	8.15	3.46	
% NEUTS	63.85	0.42	0.33	
% LYMPHS	27.30	0.43	1.57	

14.4 Interfering Substances

See 13.5

14.5 Clinical Sensitivity/Specificity/Predictive Values

Not applicable.

SOP ID: GEC.H217 SOP Version #: 4

CONFIDENTIAL: Authorized for internal use only Page 27 of 48

SAFETY 15.

Quest Diagnostics

You, the employee, have a direct responsibility to avoid injury and illness at work. Nearly all harmful exposures to infectious substances and chemicals, and other injuries, can be avoided with effective training and consistent safe work practices.

Become familiar with the Environmental Health and Safety (EHS) Manual to learn the requirements on working safely and protecting the environment from harm. Although lab work typically focuses on the hazards of working with specimens and chemicals, we must also control other important hazards.

- Slips, trips, and falls cause many serious injuries. Please ensure that spills are cleaned quickly (to avoid slippery floors) and that you can see and avoid obstacles in your path.
- Ergonomic injuries result from performing tasks with too much repetition, force, or awkward position. Ergonomic injuries include strains and back injuries. Learn about ergonomic hazards and how to prevent this type of injury.
- Scratches, lacerations, and needlesticks can result in serious health consequences. Attempt to find ways to eliminate your risk when working with sharp materials.

Report all accidents and injuries immediately to your supervisor or the business unit Environmental Health and Safety Manager or Specialist.

RELATED DOCUMENTS 16.

- Material Safety Data Sheets
- LH 750 Reference Manual
- Critical Values (Lab policy)
- Quality Control Program policy
- · CUM or ICUM, LIS procedure
- Quest Diagnostics Records Management Program
- Laboratory Safety Manual
- Current package inserts for Coulter[®] S-Cal[®] Calibrator Kit Package, Coulter[®] Latron 1 and 2, Coulter[®] 5C[®] Cell Control, and Coulter[®] Retic-C
- Pathologist Slide Review Request (AG.F127)
- LH 750 Maintenance Log (AG.F257)
- Daily Quality Control Schedule for LH750, GEC (AG.F273)

17. REFERENCES

- 1. Coulter Counter Model LH750 Operator's Guide (PN 4277249B), May 2002.
- 2. "Hematology Procedures for Abnormal Bloods" (PN 4206695A), April, 1999, Coulter Education Center, Miami Lakes, FL
- 3. "Differential Leukocyte Counting", CAP Conference, Aspen 1977, John A. Koepke, M.D., Ed., Published by College of American Pathologists.

SOP ID: GEC.H217 SOP Version #: 4

CONFIDENTIAL: Authorized for internal use only Page 28 of 48

- 4. Color Atlas of Hematology CAP Hematology and Clinical Microscopy Resource Committee Distinction between megakaryocyte and giant platelets in the section "Megakaryocyte Maturation".
- 5. Hematology: Principles and Procedures by Barbara A. Brown, 2nd Edition, 1976, pp 77-81.
- A Color Atlas & Instruction Manual of Peripheral Blood Cell Morphology, O'Connor Bartera, 1984.
- 7. Nathan, David G. & Oski, Frank A. "Hematology of Infancy and Childhood", 3rd edition, 1987.
- 8. Lanzkowsky, Philip, "Pediatric Hematology-Oncology, a Treatise for the Clinician", 1980.
- 9. Miller, Dennis R. Ed. "Blood Diseases of Infancy and Childhood", 5th edition, 1984.
- 10. Henry, J B, ed. "Clinical Diagnosis and Management by Laboratory Methods", 20th edition, 2001.
- 11. Coulter[®] S-Cal[®] Calibrator Kit Package insert, Beckman Coulter, 2009.
- 12. Coulter® Latron 1 and 2 Package insert, Beckman Coulter, Inc., 2007.
- 13. Coulter[®] 5C[®] Cell Control Package insert, Beckman Coulter, 2008.
- 14. Coulter[®] Retic-C Package insert, Beckman Coulter, 2007.
- Gulati GL, Asselta A, Chen C. Using a vortex to disaggregate platelet clumps. Laboratory Medicine. 1997;28:665-667.
- Rodak B, Fritsma G, & Doig, K. "Hematology: Clinical principles and Applications", Third edition, 2007, pg 176-177 and 526-530.

18. REVISION HISTORY

Version	Date	Section	Reason	Reviser	Approval
0	3/10/14	4.3	Edit reference to Addenda 7	C. Reidenauer	Dr. Cacciabeve
		16	Add forms	L. Barrett	
		Addenda 7	Replace form with process steps]	
		Addenda 11	Pathologist Slide Review Request moved to		
			section 6		
1	9/18/14	10.3,11.2,	Replaced $10^3/\mu L$ units with x10(3)/mcL	M. Sabonis	Dr. Cacciabeve
		Addenda 1	····•		
2	4/15/15			L. Barrett	R SanLuis
			scan smear), add re-scan criteria		
3	7/17/15	11.2	Reformat values to eliminate \leq and \geq signs	L. Barrett	R SanLuis

19. ADDENDA

Addendum	Title	Form
1	Reference Ranges	1 revise
2	CBC Diff/Scan Action and Repeat Criteria	d 7/01/
3	LH 750 Decision Rules, Flags and Action Criteria	01

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 29 of 48

Quest Diagnostics	Title:	Coulter LH750 Operation for Complete Blood Count
Site: Germantown Emergency Center		and Reticulocyte Automated Tests

4	Daily Quality Control for LH750 at SGAH and WAH
5	Calculation Formulas
6	Plasma Replacement
7	Reagent Change and Background Check Process
8	Smear Review and Manual Differential
9	DIFF Keyboard: Accessing Differential Result Entry
10	Quick Reference Differential Flagging Criteria Chart

SOP ID: GEC.H217 SOP Version #: 4 CONFIDENTIAL: Authorized for internal use only Page 30 of 48