TRAINING UPDATE

Lab Location: Department: GEC, SGMC & WAH

Core

Date Distributed:
Due Date:
Implementation:

4/15/2016 5/9/2016 **5/10/2016**

DESCRIPTION OF PROCEDURE REVISION

Name of procedure:

Cell Count and Differential, CSF GEC.H06, SGAH.H08, WAH.H09 v4

Description of change(s):

Section 8.1: Replace specific centrifugation instruction with referral to posted instruction

This revised SOP will be implemented on May 10, 2016

Document your compliance with this training update by taking the quiz in the MTS system.

Approved draft for training (version 4)

Technical SOP

Title	Cell Count and Differential, CSF		
Prepared by	Cynthia Reidenauer	Date:	3/21/2011
Owner	Robert SanLuis	Date:	11/26/2013

Laboratory Approval	Local Effective Date:	
Print Name	Signature	Date
Refer to the electronic signature		
page for approval and approval		
dates.		

Review			
Print Name	Signature	Date	

TABLE OF CONTENTS

1.	Test Information	2
2.	Analytical Principle	3
3.	Specimen Requirements	3
4.	Reagents	4
5.	Calibrators/Standards	
6.	Quality Control	
7.	Equipment and Supplies	
8.	Procedure	9
9.	Calculations	12
10.	Reporting Results and Repeat Criteria	12
11.	Expected Values	13
12.	Clinical Significance	
13.	Procedure Notes	
14.	Limitations of Method	16
15.	Safety	16
16.	Related Documents	16
17.	References	16
18.	Revision History	17
19.	Addenda	17

1. TEST INFORMATION

Assay	Method/Instrument	Local Code
Cell Count and Differential, CSF		CCTD
CSF Cell Ct diff ER ONLY (WAH only)	Manual/Microscopic	CCNDE
CSF Cell Ct tube number 1 ER ONLY, additional test (SGMC)		CRB1

Synonyms/Abbreviations
CSF Count, Cerebrospinal Fluid Cell Count, Spinal Fluid Count

Department	
Hematology	_

2. ANALYTICAL PRINCIPLE

Gross examination of the specimen is performed to determine the appearance. A microscopic examination is performed for the Total Nucleated Cell count (TNC) and Red Blood Cell count (RBC). Smears for cell identification are prepared using cyto-centrifuge or conventional centrifuge. Nucleated cell identification/ differential counts are done on Wright's Stained smears prepared using a cyto-centrifuge or smeared sediment from clinical centrifugation.

3. SPECIMEN REQUIREMENTS

3.1 Patient Preparation

Component	Special Notations	
Fasting/Special Diets	Not Applicable	
Specimen Collection and/or Timing	Not Applicable	
Special Collection Procedures All SGMC and GEC patients; WAH other than ED patients SGMC other than ED patients	Specimens are usually collected in three sterile tubes labeled 1, 2, and 3 in the order in which they are withdrawn. Tube 1 is used for chemical and serological tests, tube 2 is used for Microbiology, tube 3 is used for the cell count because it is the least likely to contain cells introduced by the spinal tap procedure. A minimum of 0.5 mL is required for the cell count.	
Special Collection Procedures WAH ED patients only	Specimens are usually collected in four sterile tubes labeled 1, 2, 3 and 4 in the order in which they are withdrawn. Tube 1 is used for Cell count, tube 2 is used for chemical and serological tests, tube 3 is used for Microbiology, tube 4 is used for the cell count and diff because it is the least likely to contain cells introduced by the spinal tap procedure. A minimum of 0.5 mL is required for the cell count.	
Special Collection Procedures SGMC ED patients only	Perform testing as described for non-ED patients and add cell count on tube 1. A minimum of 0.5 mL is required for the cell count.	
Other	Not Applicable	

3.2 Specimen Type & Handling

	Criteria	
Type	-Preferred	CSF – tube #3 or #4 (see Section 3.1)
		If only one tube is received, perform all testing on that tube. Note: If only 3 tubes are received for a WAH ED or
		SGMC ED patient, follow the testing pattern for non-

Criteria		
-Other Acceptable	ED patients but also do a cell count on tube #1 before it is spun for chemistry / serological testing. None	
Collection Container	Sterile Plastic C	onical Tube
Volume - Optimum	2.0 mL	
- Minimum	0.5 mL	
Transport Container and Temperature	Sterile Plastic Conical Tube at room temperature	
Stability & Storage Requirements	Room Temperature:	Rapid deterioration and cell lysis occurs on prolonged standing in CSFs, the sample should be processed STAT and the count should be performed as soon as it is received. Stable for 24 hrs.
	Refrigerated:	Same as above.
	Frozen:	Unacceptable
Timing Considerations	Not Applicable	
Unacceptable Specimens & Actions to Take	Clotted specimens - perform counts and append the comment: "Specimen contains clots, counts may not be accurate." Specimens received after 24 hours - perform the counts and append the comment: "Counts may not be accurate due to the age of the specimen." Due to nature of specimen, do not reject, unless frozen. If the specimen is received frozen, cancel the test with the comment: "Specimen unsuitable for assay; received frozen." Notify a caregiver and document in the LIS.	
Compromising Physical	None defined	
Characteristics Other Considerations	None defined	

4. REAGENTS

Refer to the Material Safety Data Sheet (MSDS) supplied with the reagents for complete safety hazards. Refer to the section in this procedure covering "SAFETY" for additional information.

4.1 Reagent Summary

Reagents	Supplier & Catalog Number
Rinse	Wescor, SS-035A
Thiazin	Wescor, SS035/049B
Eosin	Wescor, SS-035C
Methanol	Wescor, SS-MEOH
Aerofix	Wescor, SS-148

0.9% Saline	Thermo 0.9% Saline cat # 23535435
22% Albumin (Obtain from Blood Bank)	Immucor CE 0088
Diff Quick Stain Pak (GEC only)	Siemens
0.005% Methylene Blue Diluting Fluid	Chantilly reagent room

4.2 Reagent Preparation and Storage

NOTE: Date and initial all reagents upon opening. Each container must be labeled with (1) substance name, (2) lot number, (3) date of preparation, (4) expiration date, (5) initials of tech, (6) any special storage instructions; check for visible signs of degradation.

Reagent	Wescor Aerospray Rinse	
Container	Plastic Bottle	
Storage	Room temperature	
Stability	Manufacturer's expiration date	
Preparation	Ready to use	

Reagent	Wescor Aerospray Thiazin	
Container	Plastic Bottle	
Storage	Room temperature	
Stability	Manufacturer's expiration date	
Preparation	Ready to use	

Reagent	Wescor Aerospray Eosin	
Container	Plastic Bottle	
Storage	Room temperature	
Stability	Manufacturer's expiration date	
Preparation	Ready to use	

Reagent	Wescor Aerospray Aerofix	
Container	Plastic Bottle	
Storage	Room temperature	
Stability	Manufacturer's expiration date	
Preparation	Add 10 ml to Methanol and mix well prior to use.	

Reagent	0.9% Saline (Obtain fresh daily from Blood Bank)	
Container	Plastic Bottle	
Storage	Room temperature	

Stability	24 hours, working supply in hematology. Open expiration on container in Blood Bank is 30 days.
Preparation	Ready to use

Reagent	22% Bovine Albumin	
Container	Glass Bottle 10 ml	
Storage	1°-10° C for long term storage	
Stability	Stable until expiration date on the bottle. If turbid, discard.	
Preparation	Ready to use	

Reagent	Diff Quick Stain Pack (GEC)	
Container	Plastic Bottle	
Storage	Room temperature	
Stability	Manufacturer's expiration date	
Preparation	Ready to use	

Reagent	0.005% Methylene Blue Diluting Fluid. Obtain when needed from the reagent room in Chantilly.
Container	Brown Glass Bottle
Storage	Room temperature
Stability	Manufacturer's expiration date. Aliquot small amount to use when needed. Stability of aliquot is 24 hours.
Preparation	Ready to use

5. CALIBRATORS/STANDARDS

Not applicable

6. QUALITY CONTROL

6.1 Controls Used

Control	Supplier & Catalog Number
Cell-Chex 2ml each of L1-UC, L1-CC	Streck Laboratories, Inc. Cat # 212431
and L2	

6.2 Control Preparation and Storage

NOTE: Date and initial all controls upon opening. Each container should be labeled with (1) substance name, (2) lot number, (3) date of preparation, (4) expiration date, (5) initials of tech, and (6) any special storage instructions; check for visible signs of degradation.

Site: GEC, SGAH & WAH

Control	Cell-Chex Level L1-UC, L1-CC and L2	
Preparation	None. It is not necessary to warm the controls to room	
	temperature before using.	
Storage/Stability	• Store upright at 2-8°C	
	Closed-vial stability 180 days.	
	Open-vial stability 30 days	

6.3 Frequency

• Cell Count and Cytocentrifuge QC is performed every 8 hours of patient testing for manual body fluid counting and per technologist.

QC menu each level of controls is as follows:

L1-UC perform cell count and crystal exam

L1-CC perform a cytospin differential and a crystal exam

L2 perform cell count only

Note: crystal exam only pertains to body fluid

- Automated or Manual stain methods is performed once per day. A smear must be reviewed on a daily basis to verify that the staining is adequate for differential of the various cells. The result of this review is documented in the manual Hematology QC book.
- Diluting fluid must be checked daily for contamination and documented. Refer to section 8.2

6.4 Tolerance Limits

a) Cell count by Manual Hemacytometer:

QC values for Manual Hemacytometer are lot specific so check package insert for lot number and expiration date. The lot number and ranges for each lot in use will be available on the Cell Chex Log.

- If both QC values are within 2 SD, patient results may be released.
- If a control value is >2SD, repeat the control before running patient samples. If the repeat control is within 2SD, patient samples may be run.
- If the repeat of the control value is still >2SD, further investigation is required before running patient samples.

b) Differential %:

QC values for Differential % are lot specific so check package insert. The lot number and ranges for each lot in use will be available on the Cell Chex Differential Log.

c) Corrective Action:

 All rejected runs must be effectively addressed through corrective action. Steps taken in response to QC failures must be documented. Patient samples in failed analytical runs must be <u>reanalyzed</u>. • Corrective action documentation must include the following: The QC rule(s) (or specific QC criteria) violated, the root cause of the problem, steps taken to correct the problem, how patient samples were handled, and the date and initials of the person recording the information.

d) Review of QC

- Refer to SOP Laboratory Quality Control Program for more details.
- Upon weekly and monthly review of QC, if the SD's or CV's are greater than the above maximums, investigate the cause for the imprecision and document implementation of corrective actions.

6.5 Review Patient Data

Since only a few patient samples may be tested in one day, daily review for trends may not be applicable.

6.6 Documentation

QC results are recorded on the Cell Chex QC log sheets.

6.7 Quality Assurance Program

The laboratory participates in CAP proficiency testing.

7. EQUIPMENT and SUPPLIES

7.1 Assay Platform

Not applicable

7.2 Equipment

Equipment	Supplier
Microscope	Not specified
Wescor Aerospray Cytocentrifuge	Wescor, Inc
CytoTek centrifuge (GEC only)	Shandon

7.3 Supplies

Supply	Supplier & Catalog Number
Disposable Pipettes	Fisher Brand or equivalent
Hemacytometer (disposable) C-CHIP	InCyto co, Ltd DHC-N01-5 neubauer improved
MLA pipette and tips	Not specified
Disposable tubes	Not specified
Cover glass	Fisher Scientific, Cat. #12-544-10 or equivalent

Form revised 7/01/01

200	, c ray	5.1000.00	
Site:	GEC,	SGAH &	WAH

Supply	Supplier & Catalog Number
Microscope Slides	Fisher Scientific, Cat. #12-550-13 or equivalent
Petri Dish	Fisher Scientific, Cat. #08-757-12 or equivalent
Applicator Sticks	Bulk Pack, Multiple Vendors
Cytopro	Wescor, Cat. #SS-113

8. PROCEDURE

NOTE: For all procedures involving specimens, buttoned lab coats, gloves, and face protection are required minimum personal protective equipment. Report all accidents to your supervisor.

PROMPT EXAMINATION AFTER RECEIPT OF CSF IN THE LABORATORY IS ESSENTIAL FOR ACCURATE RESULTS. Cellular disintegration may occur if there is a delay in testing. If delay is unavoidable, refrigerate until testing can commence.

8.1 Color and Appearance

Step	Examination for Appearance and color		
1.	Examine the CSF for appearance and color.		
2.	If bloody, centrifuge the tube used for chemistry testing for the time and speed		
	posted on centrifuge 5 min. at 3400 rpm to remove the cellular elements and		
	report the color of the supernatant.		
3.	Compare the supernatant to distilled water. Use the term xanthochromia for		
	any orange, pink or yellow color.		

8.2 Concentration

Step	Specimen Preparation
1.	Place a drop of Methylene Blue diluting fluid on a slide and coverslip.
	Examine under 100X for contamination with artifacts, crystals or bacteria, replace fluid if necessary. Record the examination on the Cell Count
	Worksheet. If the diluting fluid is acceptable to, proceed to specimen dilution.
2.	Inspect specimen to determine the appropriate dilution.
	a. All specimens will be diluted with 0.005% Methylene Blue Diluting fluid.
	b. The minimum dilution is 1:2. This will ensure distinction between RBC and TNC. Red Cells will not pick up the methylene blue stain and will appear agranular. Methylene Blue allows the visual distinction of nucleated cells by staining the granules a faint blue.
3.	Mix specimen well and make the appropriate dilution. Refer to dilution tables below.

Step	1:2 Dilution
1.	Perform the diluting fluid check as described above. If the diluting fluid is
	acceptable to use, proceed to dilution of the specimen.

Step	1:2 Dilution			
2.	Mix specimen well. Using a 100μL pipette, add 100μL of body fluid to 100μl			
	of Methylene Blue Diluting Fluid. Mix dilution well. Let sit 10-15 minutes.			
	Dilution Factor is 2			
3.	Charge the two chambers of the hemacytometer by touching the tip of the			
	pipette to the coverslip edge where it meets the chamber floor. The chamber			
	will fill by capillary action if the hemacytometer and coverslip are clean.			
4.	If the hemacytometer is overcharged, it must be discarded and a fresh one			
	used.			
5.	Place the charged hemacytometer in a humidified Petri dish for 10 minutes to			
	allow the cells to settle.			
6.	Place the hemacytometer on the microscope and examine. The area to be			
	counted is adjusted according to the sample.			
	• If less than 20 cells are present in one square, count all the squares.			
	• If greater than 20 cells are present in one square, count the four corner			
	squares only.			
	• If greater than 200 cells are present in one square count 5 of the 25			
	squares in the middle square.			
	ALWAYS USE THE AVERAGE COUNT FROM BOTH SIDES OF THE			
	CHAMBER IN THE FORMULA. Count the total number of rbcs and			
	nucleated cells present on both sides. The sides should agree within 20%.			
7.	Calculate the total number of RBCs and nucleated cells. Follow instructions			
	on the Cell Count Worksheet to calculate results.			
8.	All calculations must be recorded on worksheet.			

Step	Diluted Specimen 1:10		
1.	Perform the diluting fluid check as described above. If the diluting fluid is		
	acceptable to use, proceed to dilution of the specimen.		
2.	Mix specimen well. Using a 100μL pipette, add 100μL of body fluid to 900μl		
	of Methylene Blue Diluting Fluid. Mix dilution well. Let sit 10-15 minutes.		
	Dilution Factor is 10		
3.	Charge a counting chamber (one pipette per side), using proper technique.		
4.	Place in a Petri dish for about 10 minutes to let the cells settle.		
5.	For counting guidelines, follow steps 6 through 8 for 1:2 Dilution		

Step	Diluted Specimen 1:20		
1.	Perform the diluting fluid check as described above. If the diluting fluid is		
	acceptable to use, proceed to dilution of the specimen.		
2.	Mix specimen well. Using a 50μL pipette, add 50μL of body fluid to 950μl of		
	Methylene Blue diluting fluid. Mix dilution well. Let sit 10-15 minutes.		
	Dilution Factor is 20		
3.	Charge a counting chamber (one pipette per side), using proper technique.		
4.	Place in a Petri dish for about 10 minutes to let the cells settle.		
5.	For counting guidelines, follow steps 6 through 8 for 1:2 Dilution		

Step	Diluted Specimen 1:50		
1.	Perform the diluting fluid check as described above. If the diluting fluid is		
	acceptable to use, proceed to dilution of the specimen.		
2.	Mix specimen well. Using a 20µL pipette, add 20µL of body fluid to 980µl of		
	Methylene Blue Diluting Fluid. Mix dilution well. Let sit 10-15 minutes.		
	Dilution Factor is 50		
3.	Charge a counting chamber (one pipette per side), using proper technique.		
4.	Place in a Petri dish for about 10 minutes to let the cells settle.		
5.	For counting guidelines, follow steps 6 through 8 for 1:2 Dilution		

Step	Diluted Specimen 1:100		
1.	Perform the diluting fluid check as described above. If the diluting fluid is		
	acceptable to use, proceed to dilution of the specimen.		
2.	Mix specimen well. Using a 10μL pipette, add 10μL of body fluid to 990μl of		
	Methylene Blue Diluting Fluid. Mix dilution well. Let sit 10-15 minutes.		
	Dilution Factor is 100		
3.	Charge a counting chamber (one pipette per side), using proper technique.		
4.	Place in a Petri dish for about 10 minutes to let the cells settle.		
5.	For counting guidelines, follow steps 6 through 8 for 1:2 Dilution		

8.3 Differential Count

- Perform a differential cell count on a cytocentrifuged specimen using Wright's stain or equivalent. The leukocytes are classified and reported as a percentage. Examine smear for the presence of immature or abnormal cells.
- If abnormal or immature cells are noted, refer to a Pathologist for review.

8.4 Cytospin

Step	Cytospin			
1.	Assemble sample of	hamber and gl	ass microscope slide in the Wescor	
	Aerospray cytocentri	ifuge carousel. A	at GEC, follow Cytopsin procedure.	
2.	IF	THEN		
	Nucleated cell	Place 3-5 drops of fluid plus 1 drop of albumin into a		
	count is <300	disposable cytofunnel and place into the Cytospin		
		centrifuge. The albumin is used to make the cells		
		adhere to the slide better before the staining procedure.		
	Nucleated cell	Cells/ µL Dilution		
	count is >300	301-700	1:2 (5 drops CSF + 5 drops saline)	
		701-1500	1:5 (2 drops CSF + 10 drops saline)	
		1501-3000	1:10 (2 drops CSF + 20 drops saline)	
		>3000	1:20 (2 drops CSF + 40 drops saline)	
		Mix dilution well and place 3-5 drops into the Cytospin		
		funnel. Add 1 drop of albumin.		
3.	Centrifuge Sample:	Sample:		
	See procedure Aerospray Hematology Slide Stainer Cytocentrifuge			

Step	Cytospin
	(SGMC/WAH) or Cytospin CSF/Body Fluid Slide Preparation (GEC) as
	appropriate.
4.	Stain slide using the Aerospray stainer or Diff Quick Stain Pack as appropriate

9. CALCULATIONS

Formula for Hemacytometer

$$\frac{\text{Cells Counted}}{\text{\# of squares counted}} \times 10 \times \text{dilution}$$

10. REPORTING RESULTS AND REPEAT CRITERIA

10.1 Interpretation of Data

None required.

10.2 Rounding

Results for cell counts are rounded to whole numbers.

10.3 Units of Measure

Parameter	Units
RBC	Cells/µL
TNC	Cells/µL
Differential Counts	%

10.4 Clinical Reportable Range

Not applicable.

10.5 Repeat Criteria and Resulting

Any duplicate counts not agreeing within 20% must be repeated.

All CSF counts must be reviewed by a second technologist prior to resulting. Calculations must be rechecked and proper placement and documentation of cell counts on the worksheet must be verified. In addition, once typed into the computer a second technologist must verify the proper placement of the counts **PRIOR TO ACCEPTING THE RESULTS.**

Second tech review for Germantown Emergency Center ONLY:

Due to the fact that there is only one person working per shift, if a CSF cell count is performed then it will be the first duty of the next shift tech to review the cell count worksheet and compare it to the results entered into the computer. The reviewing tech will initial that the second tech review was performed.

All fluids needing a pathology review are to be taken to the pathologist on call for Hematology. All slides are to be accompanied by an IRA report from the LIS and the pathologist slide review form.

11. EXPECTED VALUES

11.1 Reference Ranges

Parameter/Units of	Both Male and Female			
Measurement	< 60 Days	≥ 60 days to Adult		
Color	Colorless			
Appearance	Clear			
RBC cells/μL	<10	<10		
TNC cells/μL	<20	<6		
Lymphocyte %	< 70	< 70		
Monocyte %	<30	<30		
Eosinophil %	<10	<10		

11.2 Critical Values

None established

11.3 Priority 3 Limit(s)

None established

12. CLINICAL SIGNIFICANCE

CSF Appearance			
Appearance Cause		Most Significance	
Crystal Clear		Normal	
Hazy, turbid, cloudy, smoky, milky	WBC's; RBC's	Meningitis, Hemorrhage, Traumatic tap	
	Microorganisms	Meningitis	
	Protein	Disorders that affect blood-brain barrier,	
		Productions of IgG within CNS	
Oily	Radiographic		
	Contrast		
	Material		
Bloody	RBC's	Hemorrhage	
Xanthochromic	Hemoglobin	Old Hemorrhage	
	_	Lysed cells from traumatic tap	
	Bilirubin	RBC Breakdown	
		Elevated serum bilirubin	
	Merthiolate	Contamination	
	Carotene	Increased serum levels	
	Protein	See above	

CSF Appearance				
Appearance Cause Most Significance				
Clotted	Protein	See above		
	Clotting Factors	Introduced by traumatic tap		
Pellicle Formation	Protein	Tubercular meningitis		
	Clotting Factors	-		

The CSF is the third major fluid of the body. It provides a physiologic system to supply nutrients to the nervous system, remove metabolic wastes and produce a mechanical barrier to cushion the brain and spinal cord against trauma. Identification of cell types present in the CSF has become a valuable diagnostic aid most frequently associated with meningitis. High WBC counts with neutrophilic majority are associated with bacterial meningitis while lymphocyte/monocyte predominance indicates viral, tubercular, etc., origin. The differential can impart diagnostic information based on abnormal cell types found indicating metastatic carcinoma, central nervous system involvement of leukemia or parasitic infections. Refer to the table below for a more complete list.

Predominant Cells Seen in CSF					
Type of Cell	Major Clinical Significance	Microscopic Findings			
Lymphocyte	Normal	All stages of development may be			
	Viral, tubercular and fungal	found.			
	meningitis				
	Multiple Sclerosis				
Neutrophil	Bacterial meningitis	Granules may be less prominent			
	Early cases of viral, tubercular, or	than in blood.			
	fungal meningitis				
	Cerebral hemorrhage	Cells disintegrate rapidly.			
Monocyte	Chronic bacterial meningitis	Found mixed with lymphocytes			
	Viral, tubercular, and fungal	and neutrophils.			
	meningitis				
	Multiple Sclerosis				
Eosinophil	Parasitic infections	Same appearance as seen in			
	Allergic reactions	blood.			
	Intracranial shunts				
	(hydrocephalus)				
Macrophages	Viral and tubercular meningitis	May contain phagocytized RBCs			
	RBC's in spinal fluid	appearing as empty vacuoles or			
		ghost cells and hemosiderin			
		granules.			
Pia arachnoid	Normal, mixed reactions,	Resemble young monocytes with			
mesothelial (PAM)	including neutrophils, lymph-	a round, not indented, nucleus.			
cells	ocytes, monocytes and plasma				
	cells				
Blast forms	Acute leukemia	Lymphocytes or myeloblasts.			
Plasma cells	Multiple Sclerosis	Transitional and classic forms			
	Lymphocyte reactions	seen.			

Predominant Cells Seen in CSF				
Type of Cell	Major Clinical Significance	Microscopic Findings		
Ependymal Cells	Normal trauma	Seen in clusters with distinct		
Choroidal Cells	Diagnostic procedures	nuclei and distinct cell walls.		
Malignant Cells	Metastatic carcinoma	Seen in clusters with fusing of		
		cell borders and nuclei.		

General Patterns of Laboratory Findings on CSF in Disease					
	Normal	Pyogenic Infections	Tuberculosis Meningitis	Virus Infection	Syphilitic Infection
Appearance	Clear, Colorless	Turbid to purulent	Clear to slightly cloudy	Clear to milky	Clear
Coagulability	Does not coagulate	Apt to clot	Fibrin web or pellicle may form	Rarely clots	Small clots in acute syphilitic meningitis and paresis
Cell Count/μL	Adults: 0-10 Children under 5 Years: 0-20	100 - Several thousand	20 - 1000	10 - Several hundred	10 - 100
Predominating Cell Type	Mononuclears	Polynuclears	70-90% mononuclears	Mononuclears	Mononuclears
Total Protein	15-45 mg/dL	50-1500 mg/dL	Normal-400 mg/dL	60-300 mg/dL	Normal-100 mg/dL
Glucose	(True Glucose) 50-80 mg/dL	Markedly decreased	Decreased, usually falls progressively	Normal	Normal or slightly decreased
Chloride (as NaCl)	118-132 mEq/L (adult)	Decreased	Decreased greatly	Normal	Normal
Colloidal (curve)	Negative	Meningitic	Meningitic	Variable	Tabetic, paretic, etc. depending on type or location of the infection
Pressure	70-150 mm H ₂ O (adult)	Usually increased	Usually increased	Normal to slightly increased	Normal except in acute meningitis.

13. PROCEDURE NOTES

- FDA Status: Laboratory Developed Test (LDT) without message
- Validated test modifications: not applicable
- Perform cell counts as soon as possible since cells deteriorate with time.
- If there is a clot, perform count on available liquid and make notation in the report. Counts on partially clotted samples may be affected depending whether or not cells are trapped in the clot.
- Low power scanning should be performed on smear to evaluate cell distribution and evaluate for presence of malignant cells.

14. LIMITATIONS OF METHOD

Not applicable

15. SAFETY

The employee has direct responsibility to avoid injury and illness at work. Nearly all harmful exposures to infectious substances and chemicals, and other injuries, can be avoided with effective training and consistent safe work practices.

Become familiar with the Environmental Health and Safety (EHS) Manual to learn the requirements on working safely and protecting the environment from harm. Although lab work typically focuses on the hazards of working with specimens and chemicals, we must also control other important hazards.

- Slips, trips, and falls cause many serious injuries. Please ensure that spills are cleaned quickly (to avoid slippery floors) and that you can see and avoid obstacles in your path.
- Ergonomic injuries result from performing tasks with too much repetition, force, or awkward position. Ergonomic injuries include strains and back injuries. Learn about ergonomic hazards and how to prevent this type of injury.
- Scratches, lacerations, and needlesticks can result in serious health consequences. Attempt to find ways to eliminate your risk when working with sharp materials.

Report all accidents and injuries <u>immediately</u> to your supervisor or the business unit Environmental Health and Safety Manager or Specialist.

16. RELATED DOCUMENTS

- 1. Laboratory Quality Control Program
- 2. Hematology Slide Stainer Cytocentrifuge, Wescor Aerospray® Model 7151, SGMC / WAH Hematology SOP
- 3. Cytospin CSF/Body Fluid Slide Preparation, GEC Hematology SOP
- 4. Diff Quick Stain Kit, Hematology SOP
- 5. Cell Count Worksheet, AG.F12
- 6. Cell Chex Control Log, AG.F87

17. REFERENCES

- 1) Body Fluids, Third Edition, Kjeldsberg, C.R., and Knight, J.A., American Society of Clinical Pathologists Press, Chicago, 1993.
- 2) Clinical Hematology and Fundamentals of Hemostasis, Second Edition, Harmening, Denise M., F.A. Davis Company, Philadelphia, 1992.
- 3) Urinalysis and Body Fluids, Edition 2, Strasinger, S.K., F.A. Davis Company, 1989
- 4) Defining CSF WBC Count Reference Values in Neonates and Young Infants, Kestenbaum Ebberson et al Pediatrics 2010:125;257-264
- 5) CSF Analysis, D. Seehusen et al American Family Physician September 15,2003; Vol. 68; Number 6, 1103-1108

18. REVISION HISTORY

Version	Date	Section	Reason	Reviser	Approval
			Supersedes SOP SGAH-WAH H019.000		
000	06/06/12		Update owner	L Barrett	J Buss, RSL
000	06/06/12	6.1, 6.7	Add diluting fluid check to match Cell Count Worksheet	J Buss	J Buss, RSanLuis
001	11/26/13		Update owner	L Barrett	R SanLuis
001	11/26/13	4	Add Methylene Blue diluting fluid and stain components	L Barrett	R SanLuis
001	11/26/13	6	Update QC material, frequency clarified	L Barrett	R SanLuis
001	11/26/13	7, 8	Remove use of alcohol swabs, filter paper and non disposable hemacytometer,	L Barrett	R SanLuis
001	11/26/13	8.2	Add Methylene Blue as diluting fluid, add process to make each dilution	L Barrett	R SanLuis
001	11/26/13	10.5	Add second review process for GEC	L Barrett	R SanLuis
001	11/26/13	13	Add handling for clots	L Barrett	R SanLuis
001	11/26/13	15	Update to standard wording	L Barrett	R SanLuis
001	11/26/13	16	Add forms, update SOP titles	L Barrett	R SanLuis
001	11/26/13	19	Remove forms	L Barrett	R SanLuis
001	11/26/13	Footer	Version # leading zero's dropped due to new EDCS in use as of 10/7/13.	L Barrett	R SanLuis
2	3/12/14	8.3	Correct 1:1 dilution to 1:2. Add dilution factors	C Reidenauer	R SanLuis
2	3/12/14	8.4	Change Isoton to saline	C Reidenauer	R SanLuis
3	3/30/16		Change SGAH to SGMC throughout	L Barrett	R SanLuis
3	3/30/16	8.1	Replace specific centrifugation instruction with referral to posted instruction	L Barrett	R SanLuis

19. ADDENDA

None