AABB Annual Meeting Education Program 2014

October 25-28, 2014 | Pennsylvania Convention Center | Philadelphia, PA

(9127-TC-HEM) PAS the Platelets, Please: The Data Behind Platelet Additive Solution

October 25, 2014 \diamond 4:00 PM - 5:30 PM

Presentation Handouts

Event Faculty List

Event Title:(9127-TC-HEM) PAS the Platelets, Please: The Data Behind Platelet Additive SolutionEvent Date:October 25, 2014Event Time:4:00 PM - 5:30 PM

Director/Moderator

William Savage, MD, PhD Associate Medical Director, Transfusion Medicine Brigham and Women's Hospital wjsavage@partners.org Disclosure: Yes

Speaker

Andrew Heaton, MD Senior Director, BB and Transfusion Service North Shore-LIJ Health System WHeaton@NSHS.edu Disclosure: Did not disclose

Speaker

Aaron Tobian, MD, PhD Associate Professor of Pathology Johns Hopkins University atobian1@jhmi.edu Disclosure: Did not disclose

Speaker

Pieter van der Meer, PhD Senior Scientist Sanquin Blood Bank p.vandermeer@sanquin.nl Disclosure: Yes

Disclosures Andrew Heaton has: • Received research support from Verax, Haemonetics, Fresenius-Fenwal, Light Integra, & Immunetics. • Honoraria from Verax, Haemonetics, Fresenius-Fenwal, TerumoBCT & Immunetics • Consulted for Cerus, Verax, Novartis Diagnostics, and Beckman Coulter • And is a member of the aaBB and ISBT Task Forces on Bacterial Assays.

PAS-PC Storage: Developments & Outcomes
Educational Objectives:
 PAS: Original goals and development history
 Inventor's goals/critical elements → Generational Changes
Storage Lesion: causes/offsetting effects of PAS formulation
 Activation and Metabolic Effects
 Membrane and ageing changes
– Current developments leading the move \rightarrow Glucose & HCO ₃
 Platelet In-Vivo Outcomes: Critical Differentiators
 Differences between first 3 generations:
 Can we rely on in-vitro studies
 Do ↓CCI's affect the inter-Tx interval
PC washing need \rightarrow reaction reduction
Next steps
Noni Sieps

Nigth Shore LIJ

Apheresis Donation · Goals included plasma replace Inventor Date Patent # Rock 8th May 4,447,415 1984	Post Separation Processing Proces	y Variables : pe = ↑ pH Vs. ↓ stimulation need → Glucose/Acetate content ≈ nutrient/buffer on α HCO ₃ /buffer need prage of high quality SDP Implications
Inventor Date Patent # Rock 8 th May 4,447,415 1984 447,415	Key development	Implications
Rock 8 th May 4,447,415 1984	Distalat atorago in o	
	plasma free medium (Plasmalyte)	plasma-free isotonic medium initiated acetate/gluconate later reissued
Holme 22 nd Sep 1987 4,695,460 Heaton 4,961,928	PSM of a physiologically compatible aqueous electrolyte solution •HCO ₃ buffered physiologic •included glucose10 days •later modified for RBC also	
Murphy 9th May 1989 4,828,976 Bertolini	22ºC Storage with low plasma in O ₂ permeable container & electrolytes	 included salts K, Ca, & Mg residual plasma load focus acetate → energy substrate

3 Generations of Platelet Additive Solutions						
	PAS - B PAS- C PAS- D I (T-Sol) InterSol CompoSol			PAS- E SSP+		
NaCl 116 77 90				69		
KCI	5 5					
MgCl ₂	1.5 1.5					
Na ₃ -Citrate	10 11 11 10					
NaH ₂ /Na ₂ HPO ₄	I ₂ /Na ₂ HPO ₄ - 28 - 26					
Na-acetate	Na-acetate 30 33 27 30					
Na-gluconate	Na-gluconate 23 -					
Holme & Heaton. 7 day viability even days in a platelet additive solution. BJH 1987;68:233. Holme &, Heaton. Platelet storage lession Correlation with ATP levels. Vox Sang 1987;53:214. Holme, Bode & Heaton. Improved platelet viability medium with inhibitors. J Lab Clin Med 119:14:1992. Bode, Mone, Heaton. Extended storage with Prostaglandin E. and Theophyline. Vox Sang 1991;60:105-112 Murphy, Kagen, Holme, Heaton. Platelet storage no glucose/bloarbonate. Transfusion 1991;31:16:20. Holme. Effect of additive solutions on platelet blochemistry. Blood Cells 14:21:430, 1982. Storage OFC in plasma-free media. In: Sibing et al. N. Nover Acad. Press. Boston, MA, 1990;119:127.						

Where nex	t:PAS deve	elopment- dire	ection & drivers
Manufacturin	g Simplicity	Manufacturable	ePlatelet Quality
Anticoagulant salt & buffer	Platelet specific & pH sparing nutrient	Membrane protection & Metabolic stimulant	
Improved platelet quality & less plasma			
Early developments	Energy substrate support	♦ NA⁺/K⁺ pump & ↑ enzyme potentiation	Focus on: ↓ activation & membranes
Plasmalyte	• PAS-2	• PAS-IIIM/SSP+	• PAS- 5 , F & G
Available	 Acetate (↓H*) 	 K^{+/}Mg⁺⁺ ≈ membrane 	 Less plasma carry-over
 Safe/Simple 	 NutrientATP 	 Glycolytic enzyme 	plasma = activation
• PSM-1	 Glycolysis 	Citrate	 Glucose for storage HCO₂ essential
 Physiologic 	• PAS-3	Composol	 Membrane stabilization
Nutrient free	 PO₄	Gluconatestabilizer	 Ca** for cytoplasm & membrane markers
Shore LIJ			

In-Vivo/Vitro Correlations ≥5 Days @ 22 C				
in O ₂ Perm	eable Containers			
In-Vitro Assay Correlation (r)	RDP in Plasma @ 5-14 days*	SDP in Plasma or PlasmaLyte @ 5-8 d ⁰	Plasma SDP & UVB @ 5 d⁺	
рН	0.56	_	0.88	
ESC (%)	0.62	0.5	_	
HSR (%)	0.66	0.53	0.65	
Lactate	0.68	_	0.91	
CD62/annexin	0.28/—	/0.51	0.84/—	
In-vivo/vitro correlations offer insight into predictive capacity: Metabolic measures are leading indicators Biologic & membrane measures are trailing indicators Correlation models should include PTR range from 10 – 80% Inter-donor, storage, agitation, & activation affect outcomes UVB = ultravient of shape change 'Holme. Vox Sang 59:12:1990 'Slichter. Transf 50:2192010				
HSR = hypotonic shock response + Goodrich. Vox Sang 90:279:2006				

PAS Vs Reactions: Residual plasma effect				
PAS & Study Size Study Design	Reactions RR: Cont Vs Test	Reference		
PAS-B: N= 168 or 765 Tx RCT: CCI & Reaction study	5.5% Vs 2.4%	Kerkhoffs Blood.108:3210		
 PAS-C/PI: N = 278 or 1129 Tx RCT: Reaction & CCI study 	11% Vs 9% Vs 7%	Kerkhoffs Brit J Haem 2010:May		
PAS- C: N = 2605 or 14,005 Tx Observational Non-inferiority	1.37 Vs 0.55%	Cohn Transfusion 2014:54:epub		
 PAS- M-Sol: N = 12 or 432 Tx Obs: PC 96% wash out study 	42% Vs 0.6%	Azuma Transfusion 2009: 49: 214		
 PAS-B associated reactions were reduced ~ 50% 24 hour PAS Cl's = 16 ± 14 Vs 21 ± 16 for Plasma SDP Inter Tx intervals = 2.1 ± 1 day Vs 2 ± 1 days for Plasma M-Sol resuspended PC reduced reactions > 90% Plasma 1 to < 100mL decreased reactions from 5.5 to 1.7%* Observational report suggested < 20 mL plasma was desirable 				
ShoreLIJ	lobian.	ranst 51: 676:2011		

PAS	Studies:	learnings	from	earlier	develo	oment
17.0	oludico.	icuming5	nom	cunici	00,000	princing

Development Conclusions:

Metabolic Storage Lesion: Multi-factorial – Platelet energy needs → Nutrient, PO₄, pH ↑ with↓glucose – Additives to support membranes (K⁺) & metabolism (Mg⁺⁺)

- In-vivo/vitro correlations:
- Biologic measures correlated across ↑ ↑ changes in values
- Membrane and apoptotic markers → trailing indicators Increasing pressure for ↓ plasma \approx Glucose & HCO₃
- Early Studies offer insight into:
- Residual plasma & relationship to \downarrow transfusion reactions
- _ Recognition that ↓plasma ↑ metabolic support burden

Future implications of the less obvious studies
Future implications of the less obvious studies Interactive Effect of Plasticizers & Separation Method: • Acceleration of glycolysisamelioration of stimulation ? • Smaller cells or activationeffects beyond 5 day ? • Platelet Inhibition Effectpotential for long term storage ? Agitation effect on Content: Container Surface Areas • PAS-PC interaction with container & agitation Washing & Post Pathogen Inactivation implications: • Pl activationoffset by ↑ buffer, ↑ nutrient ?
■ Plasma ↓ < 5%requires glucose, acetate & HCO ₃
 How much HCO₃ is needed
 Relationship of Acetate: Glucose ratio Potental for Ca⁺⁺ to reduce apoptosis

- Potential for Ca⁺⁺ to reduce apoptosis
 Effect of elutriation method, plasticizer, & low plasma level
- sovery

Container Plasticizer Affects Long Term Storage						
BTHC	-PL 2209	SI	Storage Day 1		Storage Day 5	
Assays Conta	iner Studies	Control†	Test†		Control	Test
β-thromboglobulin re	lease (%)	11.0 ± 7.0	14.8 ± 5.1	1 18	.8 ± 7.9	24.6 ± 5.6
Percentage of osmo	tic recovery	51 ± 5	45 ± 9	5	57 ± 13	52 ± 12
Morphology score§		603 ± 39	572 ± 55	51	16 ± 61	527 ± 38
Lactate (mmoL/L)		3.1 ± 0.5	3.9 ± 0.1	1 (11	.4 ± 2.3	14.8 ± 2.5
Glucose (mg/dL)		380 ± 25	376 ± 15	30	04 ± 38	286 ± 24
• Container permeability K(O ₂) α Plastic, Surface, & thickness					kness	
Oxyger	n Consum	ption C(O ₂)	α Plasticiz	er: BT⊦	IC > TOT	ГМ
• BTHC	↑ Lactate	production r	ate with ef	fect on	PTR's	
Laboratory A† Laboratory B‡ Laboratory C‡					atory C‡	
Multiple-hit	PL-732§	PL-2209	PL-1240§	PL-2209	PL-732	PL-2209
recovery (%)	38 ± 13	34 ± 17	36 ± 10	37 ± 11	51 ± 9	47)± 10
Snyder. Transf 32: 736:1992						

PAS-C, E, F a	& Exp	erimental P	AS In-vi	vo studies
New FDA standa	ard of si	multaneous tes	t/fresh usir	ng BEST SOP
In-Vivo - 5 day	PTR	Test/Control	Survival	Test/Control
PAS - C	46 %	81%	5.7 days	72%
PAS - F	54 %	87%	6.4 days	78%
PAS - E	37 %	54%	4.8 days	54%
Slichter In-Vivo P Evaluated pla BTHC Vs TO	AS - SL asticizei TM, sui	יר stored @ 80 r, elutriation, & s rge Vs LRS, & ל	720 PAS: F storage du 5 to 18 day	ration ration v storage

Integrated E	ffect of	[:] Sepa	irati	on,	PAS, &	В٦	ГНС
In-Vivo Value -	5 day	PAC-	с		PAS-F		PAS-E
Recovery	/	46 %	6		54 %		37 %
Survival		5.7 da	ys	6	.4 days	4	4.8 days
 Slichter evaluat 	ted Haem	onetics	MCS	S+ Vs	s Trima &	Spe	ectra:
 Platelets we 	ere stored	d in CLX	(PV	C ba	gs with TE	EHT	M) and;
 In CPP (BT 	HC) & CL	X (TEH	ITM)	with	PAS:Plasi	ma	@ 80:20
 Storage dui 	ration bet	ween 5	and	18 da	ays at 22º	С	
 Holme study us 	sed CLX,	a PAS:F	Plasm	na @	93:7, & F	RP	-PC
Study – PAS- (N)	Stored	Test	Surv	/ival	Containe	er	Device
Slichter – F - (10)	9 Days	44%	5.0 0	days	PVC-TEH	ΓМ	Trima
Slichter - F - (8)	9 Days	29%	3.4 0	days	PVC-BTH	IC	Trima
*Holme – G - (6)	10 Days	34%	4.8 0	days	PVC-TEH	ΓМ	PRP-PC
 Long stored P/ BTHC was ass 	AS - PC h sociated v	ad acce vith ↓reo	eptab cover	le re ies >	coveries 7 days		
* Required HCO3 +	5% CO2 atmos	phere. Slich	ter. Blood	123: 2	71: 2014 Holme.	Vox 5	Sang 59:12:1990

Leukodepletion -	\rightarrow Smalle	er & M	lore Ac	tivate	ed Cells
RCSS WB PPP	RBCC BC PF		Horces by opening the second s	Anglet Anglet Anglet Anglet Anglet Dica	Chamber geometry enhances reparation
Apoptotic marker eva	aluation of 4	BC-PC	& Trima \$	SDP (N	v= 20):
Variable Da	y 1	Day 5	5	D	ay 7
MPV (fL)			Albanyan. Tra	insfusion 4	9: 108:2009
AP-PCs 7.6 (2	±0.6)‡	7.9 (±0.	6)†‡	8.1 (±0.7)†‡
BC-PCs 8.4 (±0.3)	8.5 (±0.	.3)	8.5 (±0.4)†
SDP platelets smal	ler < BCPC	(‡) & st	orage†siz	$ze \rightarrow d$	ay 5(†)
	Slichter (T	EHTM)	Stored	Test	Survival
	Surge elut	triation	9 Days	55%	6.6 days
Ng Company (Incompany)	Platelet flo	otation	9 Days	44%	5.0 days

	achina:	BBS-ALOW	Diaema	Studios
170-10 00	Johnny.	DIG-A LOW		Judics
 SDP diluted in Manually separe Platelet wash results 	250 mL B ated pelle ecovery=	RS-A & centrifue t resuspended 90 ±1 % with 2	ged @ 2650g (> 30 min) in 2 ± 0.7% res	g x 10 min 200 mL idual
		Day	Oikawa. Transfu	ision 53:655:2013
Characteristic	1	3	5	7
pH at 37°C				
Control	7.15 ± 0.05	7.09 ± 0.03	7.00 ± 0.05	6.84 ± 0.10
Test	7.24 ± 0.04†	7.18 ± 0.09†	7.31 ± 0.12†	7.50 ± 0.04†
Glucose (mmol/L)			\sim	
Control	22.21 ± 1.95	20.88 ± 1.97	19.23 ± 2.20	17.37 ± 1.51
Test	5.00 ± 0.72†	1.95 ± 0.86†	0.12 ± 0.14†	$0.03 \pm 0.01 \dagger$
HSR (%)				1
Control	69.7 ± 6.4	63.2 ± 3.7	58.6 ± 5.7	49.2 ± 4.4
Test	70.4 ± 3.5	75.5 ± 6.7†	64.5 ± 6.8	66.9 ± 4.1†
NaCl	05.2		\bigcirc	
KCI	3.8	Study utilized	sterile fill mix	ture
MaCla	0.9	Decigned for w	vach + brief e	torago
NaHCO	26.6			lorage
Glucose	5.8	Glucose was	absent after o	day 3
Trisodium citrate	4.2 •	In-vitro studies	s ≈ plasma co	ontrols
Citric acid	1.8		a peeded fo	n Aquality
CaCl ₂	1.4		ise needed to	rrquality

Pathogen Reduction: PAS/I	Plasma Vira	al Inhibition
	A Star2	
Amotosal	en Illumination CA	D Storage
Amotosalen & UVA effective in	↓ bacterial c	ontamination
Enveloped Viruses	PC	PC/PL
Reduction in Plasma & PAS	35% Plasma	100% Plasma
Human immunodeficiency virus type (cell)	>6.1	>6.7
Hepatitis C virus (HCV)	>4.5	>4.5
BVDV (model for HCV)	>6.0	≥6.0 (≥5.4)
Hepatitis B virus (HBV)	>5.5	>4.5
Human T-cell lymphotropic virus type 1	4.7	≥4.5
West Nile virus (WNV)	>6.0	≥6.8
Chikungunya virus Company data	>6.4	≥7.6

PAS-E & RIDU	Flavin (wiirasoi°)	Ellection	Slorage
 15 In-vitro studies M units 3.89 ± .3 10¹¹/unit 	s in SSP+ 5 x 10 ¹¹ / ur	& Mirasol wit hit & Control	h Trima dou units 3.95 ±	ble SDP's : .3 x
– Annexin V was	↑ from day	/ # 1 togethe	r with todepo	plarization
pH value (at 22°C) C M Glucose content (mmol/L) C M Lactate content (mmol/L) C M	$\begin{array}{c} 7.31 \pm 0.01 \\ 7.31 \pm 0.01 \\ 6.4 \pm 0.5 \\ 6.4 \pm 0.5 \\ 1.3 \pm 0.1 \\ 1.3 \pm 0.1 \end{array}$	$\begin{array}{c} 7.31 \pm 0.03 \\ 7.27 \pm 0.04 \dagger \\ 5.8 \pm 0.5 \\ 5.6 \pm 0.5 \dagger \\ 2.0 \pm 0.4 \\ 2.5 \pm 0.4 \dagger \end{array}$	$\begin{array}{l} 7.40 \pm 0.04 \\ 7.17 \pm 0.09 \dagger \\ 4.3 \pm 0.5 \\ 2.5 \pm 1.0 \dagger \\ 5.2 \pm 0.6 \\ 8.6 \pm 1.7 \dagger \end{array}$	7.43 0.05 7.09 ± 0.09† 3.5 ± 0.6 0.6 ± 0.8† 6.7 ±0.9 11.3 ± 1.7†
P-selectin (CD62P) expression (%) C M	12.7 ± 7.1 12.7 ± 7.1	$\begin{array}{l} 17.6 \pm 7.7 \\ 31.2 \pm 11.6 \\ \end{array}$	$\begin{array}{c} 13.3 \pm 5.2 \\ 43.9 \pm 14.1 \\ \end{array}$	$\begin{array}{c} 18.5 \pm 6.0 \\ 57.0 \pm 10.8 \end{array} \\ $
 Metabolic studies Mirasol Rx ↑met 	: Glucose Lactate I abolic sti	↓ rate 0.3 Vs Rate ↑ 0.5 Vs mulation @	0.15 mM/hr 0.28 mM/hr acceptab	r/10 ¹² cells r/10 ¹² cells le limit

Evolution of PAS & Next Steps

Early generation PAS studies showed:

0 D:

- + BTHC Plasticizer $\uparrow metabolism: \Delta \uparrow nutrient requirement$
- Elutriation can affect cell population & metabolic rates
- Pathogen inactivation support 7 day storage but tenergy need Technology advances identified:
- · Bacterial contamination was limiter to storage longevity

Platelet storage lesion mostly metabolic:

- O2 levels, glucose, & acetate are required for 7 days
- PO₄, K⁺, Mg⁺⁺ are important

– \downarrow stimulation separation & 5th gen PAS may offset PI effect

- Fifth Generation/Current Studies include:
 - Interactive effects of elutriation, plasticizer, & formulation
 - Effects of lower residual plasma

4 th /5 th Gen F	Platelet /	Additive	Solutio	ons
(mM/L)	BRS - A	M- Sol	PAS - F	PAS -5/G
Na/Cl	95	77	98	110
KCI/CaCl ₂	3.8/1.4	3/1	5	5/1
MgCl ₂	0.9	1.6	3/1.5	3
Na _{3/} Cit/Citric Acid	1.8/4.2	14	-	10 - 7.5/2.5
NaH ₂ PO ₄ /Na ₂ HPO ₄	-	-	1	4
Na-acetate	-	21	27	30/15
Na-gluconate/Glucose	-/5.8	-/15	23/-	17/30
BiCarbonate (HCO ₃)	26.6	44		10-20/18
Additive • PAS C (Solution • PAS F Generations • PAS V/C	PAS-3) 20 20 3/M-Sol 20	009 PO ₄ 013 Addit 010-? Gluco	enhanced a ion of K ⁺ an	cetate solution d MG ⁺⁺ + HCO ₂ buffer

5 th Generation	PAS-	V and PAS	-G In V	ivo Studies
PAS-5: 5% plasma • Invitro 20mM HCC • Invivo 10mM HCC • 95% PAS-5	95 - 80 - 93 22 65 - 93 22 50 - 35 - 20 -	Hypotonic	Shock Res	1 2 14
In-Vivo - 5 day*	PTR	Test/Control	Survival	Test/Control
PAS – 5 (N =6)	54%	74%	150 hrs	75%
PAS-G @ Day 7 • Glucose only	¹¹¹ In I Viabilit	In- Vivo y Day 7* I	Plasma	PAS-G
 Solution + pellet 80% PAS-G 	Recov	very (%)	56.3	58.0
HCO ₃ 18mM Radwanski	Surviv	/al (hrs) nsfusion 51 Supp: 2011	141.0 * Compar	159.4 ay communication

Stora	age Advan	tages of	Elutriatio	on & Pla	asticizer
PLATELET RECOVERY (95% LCL as % of Control Platelet Recovery)	100 - 80 - 60 - 20 - 0 - PLATE	T-EL 	P T-CLX H-CLX T-ELP 8 10 12 DRAGE 1	Slichter. Blood	123:271:2014
9 Day @	22ºC	TEH	HTM	B	<u>THC</u>
Devices (N)	MCS+ (4)	Trima (10)	Trima (8)	Spectra (5)
Recoverie	es %	55%	44%	*29%	*24%
Survivals	days	⁰ 6.6	5.0	3.4	3.2
• N = 83 • Graph	: MCS+ & Tri ≈ relative PT	ma in TEH ⁻ R @ % of co	TM Vs. BTH ntrol °= sig D	IC< 7 d	comparable = Sig Diff to H-CLX

10 mM HCO	Trima			Amicus		
N = 10 Sample	Total protein (mg/ml)	% Pla remov	isma /ed	Fotal protein (mg/ml)	% Pla	is ma ved
100% Plasma 65% PAS 5 95% PAS 5	61.6 ± 6. 19.0 ± 2. 1.8 ± 0.	4 – 3 68-8 ± 4 97-0 ±	± 5.9 ± 0.5	61.5 ± 8.0 19.3 ± 2.3 1.9 ± 0.3	66-9 ± 96-7 ±	± 5-5
Amicus store 6 mL plasma 7 day lov Amicus SDP	ed 5 and 7 a, little diff v plasma 100% I	7 days @ erence Ai PAS-5 pr Plasma	differen nicus:T oducts = 65%	t plasma: rima, pH < ≈ acceptal Plasma	PAS rati < Amicus ble in-vit 95% P	OS S TO Plasma
Amicus store 6 mL plasma 7 day lov Amicus SDP pH	ed 5 and 7 a, little diff w plasma <u>100% I</u> 7.24	7 days @ erence Ar PAS-5 pr Plasma 7.05	differen nicus:T oducts = <u>65%</u> 7.48	t plasma: rima, pH < ≈ acceptal Plasma 7.4	PAS rati < Amicus ble in-vit <u>95% P</u> 7.5	OS S TO Plasma 7.44
Amicus store 6 mL plasma 7 day lov Amicus SDP pH Platelet MPV fl	ed 5 and 7 a, little diff w plasma <u>100% I</u> 7.24 7.3	7 days @ erence Ar PAS-5 pr Plasma 7.05 7.5	differen nicus:T oducts = <u>65%</u> 7.48 7.3	t plasma: rima, pH ≺ ≈ acceptal Plasma 7.4 7.5	PAS rati < Amicus ble in-vit <u>95% P</u> 7.5 7.2	OS S TO Plasma 7.44 7.3
Amicus store 6 mL plasma 7 day lov Amicus SDP pH Platelet MPV fl HSR - %	ed 5 and 7 a, little diff <u>v plasma</u> <u>100% I</u> 7.24 7.3 59	7 days @ erence Ar PAS-5 pr Plasma 7.05 7.5 49	differen micus:T oducts = <u>65%</u> 7.48 7.3 72	t plasma: rima, pH < ≈ acceptal Plasma 7.4 7.5 67	PAS rati < Amicus ble in-vit <u>95% P</u> 7.5 7.2 68	OS 570 7.44 7.3 59
Amicus store 6 mL plasma 7 day lov Amicus SDP pH Platelet MPV fl HSR - % Annexin-V - %	ed 5 and 5 a, little diff v plasma <u>100% I</u> 7.24 7.3 59 21	7 days @ erence Ar PAS-5 pr Plasma 7.05 7.5 49 24	differen micus:T oducts = 65% 7.48 7.3 72 17	t plasma: rima, pH ≪ <u>≈ acceptal</u> <u>Plasma</u> 7.4 7.5 67 18	PAS rati < Amicus ble in-vit 95% P 7.5 7.2 68 16	0S 570 7.44 7.3 59 16

•			
1			

PAS benefits for PI-PC, \downarrow Plasma, & \rightarrow Storage
• Reduced reactions (& ↑Plasma Harvest) require low residual
 5th gen PAS offers ↑buffering & plasma nutrient replacement
 Low plasma will facilitate TRALI mitigation
 Pathogen Reduction reduces viral & bacterial load:
• Allows long storage opportunity \rightarrow improved metabolic suppor
• PI stimulates platelets Δ platelet metabolic support desirable
 Container Plasticizer, & Elutriation method supports:
 ↑ Oxygenation, ↓ glycolysis, &: selective cell harvest
 Membrane & apopototic effector modification is possible
Patient Dosing & Reaction Reduction require PAS changes:
Patient dosing is decreasingincreased focus on cell quality
 PAS development represents a winning combination:
• \uparrow Storage quality & \downarrow antigen load \rightarrow offset PI & BTHC effect

North Shore LIJ

Next developments in Single Donor Platelets
PAS development: (no negative sequelae in 20 years)
• Low plasma $\approx \downarrow$ reactions, \downarrow TRALI risk, & \downarrow ABO matching
 Tighter manufacturing ≈ (containers, content, & agitation)
 Benefits likely to create a Standard of Practice Patient - reduces reactions & mitigates TRALI risk Doctor - prophylactic drug Rx, & less patient intervention Blood Center - frees up fractionation plasma & is profitable Hospital - reduces ABO matching & may reduces cost
 The Next Steps: PAS uptake will be driven by hospital request Pathogen Inactivation/Bacterial Testing offers 7 day dating PAS development → offset the adverse effects of PI
Nith

_

Disclosures

None related to the topics today

Objectives

- Discuss the platelet storage lesion, and how platelet additive solutions (PASs) can help prevent it
- Understand the roles and interactions of various ingredients of PAS
- Assess the role of glucose during platelet storage
 Evaluate recovery and survival of platelets stored in different PASs

|2

Platelet additive solution

- A balanced electrolyte solution that sustains platelet storage
- Originally developed to
- remove plasma as source of proteolytic and glycolytic enzymes; prevent platelet storage lesion
- supplement limited buffering capacity of plasma; maintain pH>6.0

|5

Platelet additive solution

Additional benefits

- · More plasma for transfusion/fractionation
- Standardized composition
- Ability to control storage environment
- Sterile, pathogen-free
- Less protein fewer allergic reactions
- Lower AB0 titer
- (Reduction of antibody-mediated TRALI)

Nomenclature International Council for Commonality in Blood Banking Automation PAS-A PAS-B PAS-C PAS-D PAS-E PAS-F PAS-G Trade name PAS-3 Composol PAS-IIIM Plasma-"PAS" PAS-2 M-Sol PAS-II PAS-III SSP+ Lyte A T-Sol Isoplate InterSol SSP Citrate X Phosphate X Acetate Magnesium Potassium X Citrate X X X Х Х X X X X X X X X X X X X X X х X X X X X X X X Gluconate Glucose х |6 Ashford, Vox Sang 2010;98:577, modified

Integration in platelet preparation process

- PRP
- BC
- Apheresis

Final plasma citrate (mM)	VIII:C at 22 h (IU/dl)	FpA (ng/ml)	Ca ²⁺ (μM)	pH
20 (neat CPD)	68 ± 17	40	25	7.6
16	71 ± 13	30	36	7.7
12	80 ± 16	28	61	7.7
10	76 ± 20	25	77	7.7
8	86 ± 17	17	96	7.7
4	clot at 30'	13.350	276	7.8
Heparin	92 ± 22	23	955	7.9

	Citrate			
	Whole blood collected in	0.5CPD (10	mM citrate)	
-	Day 7	PAS-2	PlasmaLyte	
	Citrat	te ±12 mM	±3 mM	
_	ß-TG, 10 ³ IU/10 ¹¹ platelets	98±9	153±70*	
	рН	6.92±0.02	7.19±0.09*	
	Lactate production#	1.0±0.1	0.7±0.7	
	#mmol/L/7 days; *p<0.05			
v	an Rhenen, transfusion 1995;35:50			13

Percentage contrib	oution to:	
-	Total	Total ATP
	oxygen	turnover, %
con	sumption, %	
arbohydrates	64	60
mino acids	11	10
ree fatty acids	5	5
actate production	n 0	6
Inknown	20	19
otal	100	100

Platelet metabolism

Glucose consumption

- into lactate 3.13±0.44 µmol/10¹¹ platelets/h (net yield 2 ATP)
- full oxidation 0.05±0.01 µmol/10¹¹ platelets/h (net yield 30 ATP)

PASs need to provide a fuel that can readily be used by platelets

| 16

| 17

Guppy Vox Sang 1990;59:146

Acetate

Serendipity:

Acetate was present in infusion fluids that happened to be used in the early PAS studies

Lactate production

- No acetate: 2.4±0.5 µmol/day/10¹¹ platelets
- 23 mM acetate: 1.3±0.3 µmol/day/10¹¹ platelets

Platelets have a maximum need of 2 mmol/L/day of acetate

Shimizu Transfusion 1993;33:304; Murphy Blood 1995;86:3951

		L
Saline (reference)	0.07	
Additive solution A acetate (10 mmol/l)	0.12	
Additive solution B acetate (20 mmol/l)	0.10	
Additive solution C acetate (30 mmol/l)	0.07	
Mean production of lactate (mmo stored in CPD plasma (40%) diluted w solutions (PASs).	ol/day/10 ¹¹ platelets vith saline or platelet	s) in et add
At 10 mM citrate in the PAS, th	e addition of 10	or 2

Day 7	pН	CD62P
PAS-2	6.98±0.07	49±10
AS-2 + Mg	7.10±0.07*	41±14

Effect of K/Mg				
Day 7	pH	CD62P		
PAS-2	6.98±0.07	49±10		
PAS-2 + Mg	7.10±0.07*	41±14		
PAS-2	6.93±0.04	55±6		
PAS-2 + K	7.19±0.03**	35±8*		
1.5 mM Mg, 4.5 r	nM K; *p<0.05;**p<0	.01		
De Wildt-Eggen Transfusio	n 2002;42:76-80			

Effect of K/Mg					
Day 7	рН	CD62P			
PAS-2	6.98±0.07	49±10			
PAS-2 + Mg	7.10±0.07*	41±14			
PAS-2	6.93±0.04	55±6			
PAS-2 + K	7.19±0.03**	35±8*			
Plasma	7.03±0.06	35±8			
PAS-2	6.94±0.05*	50±8*			
PAS-2 + Mg + K	7.15±0.10*	23±6*			
1.5 mM Mg, 4.5 mM K; *p<0.05;**p<0.01					
De Wildt-Eggen Transfusion 2	002;42:76-80		2		

Effect of K/Mg

Potassium

• maintaining membrane potential

Magnesium

- activates potassium pumps
- decreases the PLT activation
- influences influx of calcium, thereby intracellular potassium concentration
- inhibits agonist-induced PLT aggregation, by changing membrane fluidity and/or by triggering of cAMP

Comparison of current PASs

| 26

| 27

- Pool and split buffy coats
- Add plasma or either of 4 PASs
- Centrifuge
- Storage in the same storage containers for 8 days
- In vitro analysis

Van der Meer, Vox Sang 2010;98:517

9

Lact	tate produ	iction rate	
plasma PAS PAS P PAS P K Mg PAS K Mg	0.13 ± 0.04 0.14 ± 0.02 0.17 ± 0.03 0.11 ± 0.03 0.10 ± 0.02	PAS-2 PAS-3 SSP+ Composol	
Van der Meer, Vox Sang 20	10;98:517		3

- Pool and split 2 platelet concentrates
- Add 10% ACD, centrifuge, remove all supernatant
- Unit A: SSP+ and 12 mM glucose 16.1±2.7 mM
- Unit B: 35% plasma/65% SSP+ 14.6±3.3 mM

| 34

- Store for 8 days
- Various in vitro measures
- n=3

- No difference between 100% PAS with added glucose versus 65% PAS/35% CPD plasma
- Therefore, the plasma carry over was necessitated by the glucose requirement

Is glucose really needed?

- Bothersome to add to PASs, as it caramelizes at neutral pH
- two-bag system, one with acidic glucose solution and one with a basic PAS
- · acidic PAS and bicarbonate pills to correct pH

Is glucose really needed?

| 37

| 38

- Pool and split 3 platelet concentrates
- Add 10% ACD, centrifuge, remove all supernatant
 Add SSP+ and
- Add SSP+ and
 no glucose
 - to 12 mM glucose
 - to 24 mM glucose
- Store for 8 days

Г

• Various *in vitro* measures

Is glucose really needed?						
Glucose added,	mM 0	12	24			
Day 1 (mean±SD)						
Glucose, mM	1.9 ± 0.3	14.4 ± 2.3	25.6 ± 4.7			
Day 8						
рН	7.05 ± 0.02	6.93 ± 0.16	6.85 ± 0.04			
Lactate prod*	0.05 ± 0.00	0.11 ± 0.01	0.10 ± 0.01			
CD62P, %	21±4	17±3	17±4			
Annexin A5, %	20±5	11±6	13±9			
Morphology	305±26	303±26	272±23			
HSR, %	45 ± 14	67±7	52±7			
ATP**	3.8±1.0	4.4 ± 1.9	5.0 ± 1.7			
*mmol/1011 platelets/d	ay			39		
**umol/10 ¹¹ platelets						

Is glucose really needed?

| 40

- Based on these results, glucose is probably not needed at all during platelet storage
 Platelets can survive on acetate only?
 Further confirmation needed

		Red	coverv a	nd s	urviva	I I	
-	n	Source	Solution	Storage, d	Recovery, %	Survival, d	
Adams, 1986	4	PRP	Plasma	5	51±4	8.7±0.3	
		PRP	PAS-F/citrate/glucose	5	39±5	6.0±1.4	
Holme, 1987	10	PRP	Plasma	7	36±11	4.6±1.3	
		PRP	"PAS"	7	51±8	6.0±0.7	
Heaton, 1990	10	PRP	Plasma	5	43±10	7.3±1.2	
		PRP	"CSM"	5	40±9	6.4±1.2	
	10	PRP	Plasma	7	56±8	6.2±1.1	
		PRP	"CSM"	7	59±6	7.3±1.2	
Holme, 1990	5	PRP	Plasma	7	41±11	6.1±1.7	
		PRP	"PAS"	7	45±12	6.7±1.3	
	5	PRP	Plasma	10	23±9	3.1±1.8	
		PRP	"PAS"	10	34±7	4.8±1.9	
Holme, 1994	18	Apheresis	Plasma	5	53±9	6.5±0.8	
		Apheresis	"PAS"	5	50±8	6.8±0.9	
Turner, 1996	11	BC	Plasma	5	51±16	6.5±1.5	
	11	BC	PAS-F	5	53±16	5.9±1.3	41
	11	BC	PAS-B	5	30±14	5.1±1.3	

Recovery and survival							
	n	Source	Solution	Storage, d	Percentage of 'fresh'		
					Recovery, %	Survival, %	
Slichter, 2010	12	PRP	Plasma	7	72±11	51±16	
	12	PRP	PAS-F	7	46±20	24±10	
Vassallo, 2010	33	Apheresis	PAS-C	5	80.5	72.1	
Dumont, 2013	66	Apheresis	PAS-F	5	86.7	78.0	
Slichter, 2014a	10	BC	Plasma	5	89±10	78±16	
	10	BC	Plasma	6	80±9	67±10	
	10	BC	Plasma	7	79±6	59±16	
	6	BC	PAS-F	5	89±11	72±13	
	10	BC	PAS-F	6	80±10	70±14	
	5	BC	PAS-F	7	79±5	55±10	
					Requirements Recovery ≥67% Survival ≥58% ⁴²		

Г

Recovery and survival

	n	Source	Solution	Storage, d	Recovery, %	Survival, d
Slichter, 2014b	6	Apheresis	plasma	5	59±7	6.5±0.6
	10	Apheresis	plasma	7	44±5	4.9±0.7
	6	Apheresis	PAS-F	5	59±5	6.3±0.8
	10	Apheresis	PAS-F	7	52±3	6.0±0.3
	4	Apheresis	PAS-F	9	55±5	6.6±0.6
	10	Apheresis	PAS-F	13	49±3	4.6±0.3
	10	Apheresis	PAS-F	14	43±3	4.2±0.5
						43

Over the past decades, numerous PASs have been developed

Some were good, some not so good

With the 'newer' PASs, *in vitro* quality of platelets is not worse than when stored in plasma

In fact, acetate partially replaces glucose consumption, limiting lactate formation and the platelet storage lesion

Conclusions

Addition of phosphate, potassium, magnesium further optimizes platelet quality There are *many* interactions between these ingredients

Glucose is probably not needed by platelets, and does not need to be included in the PAS, nor is plasma carry over necessary

Recovery and survival of platelets stored in PAS conform to FDA requirements

Summary

In vitro function of platelets in PAS

Similar to that of platelets in plasma

Opportunities to have a longer storage time, and/or have better quality during current storage time

| 47