AABB Annual Meeting Education Program 2014

October 25-28, 2014 | Pennsylvania Convention Center | Philadelphia, PA

(9312-TC) Evaluating Antibodies for Clinical Significance, One Blood Group System at a Time: Round 3

October 27, 2014 \diamondsuit 10:30 AM - 12:00 PM

Event Faculty List

Event Title:(9312-TC) Evaluating Antibodies for Clinical Significance, One Blood Group System at a Time:
Round 3Event Date:October 27, 2014Event Time:10:30 AM - 12:00 PM

Director

Ann Steiner, MT(ASCP)SBB Transfusion Technical Specialist Ortho Clinical Diagnostics asteine2@its.jnj.com Disclosure: Yes

Moderator

Gregory Halverson, BS, MT(ASCP)SBB, DLM halvergy@ucmail.uc.edu Disclosure: Did not disclose

Speaker

Susan Johnson, MSTM, MT(ASCP) Director, Clinical Education BloodCenter of Wisconsin sue.johnson@bcw.edu Disclosure: Did not disclose

Speaker

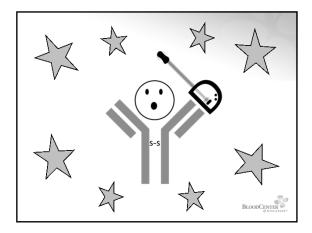
Jill Storry, PhD, FIBMS Region Skne Jill.Storry@med.lu.se Disclosure: Did not disclose

Anti-D: Simple Yet Complex

Evaluating Antibodies for Clinical Significance: One Blood Group at a Time Round 3

AABB Annual Meeting Philadelphia, PA October 27, 2014

Susan T. Johnson, MSTM, MT(ASCP)SBB Director, Clinical Education BloodCenter of Wisconsin

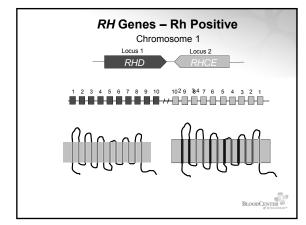

Objectives

- Describe the immunologic response to RhD protein
- Compare & contrast *in-vivo* and *in-vitro* characteristics of alloanti-D, passive anti-D and autoanti-D
 - Discuss the clinical significance of anti-D in transfusion and pregnancy
- Discuss anti-D in Partial D individuals

BLOODCENTER

	D	С	с	E	е	к	Fya	Fyb	Jka	Jkb	S	s	IAT
1	+	+	0	0	+	0	+	0	+	0	0	+	3
2	+	+	0	0	+	+	0	+	+	+	+	+	3
3	+	0	+	+	0	0	0	+	+	0	+	+	3
4	+	0	+	0	+	0	0	+	0	+	0	+	3
5	0	+	+	0	+	0	+	+	+	0	+	0	0
6	0	0	+	0	+	+	0	+	0	+	+	+	0
7	0	0	+	+	0	0	+	0	0	+	0	+	0
8	0	0	+	0	+	0	0	+	+	0	+	0	0
A	uto												0

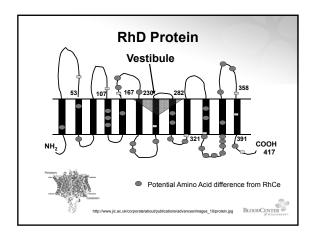
Anti-D • Most studied of all antibodies to RBC antigens "Rock Star" of Antibodies!

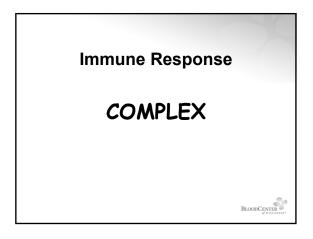


Erythroblastosis in 1943

- 12% of marriages paired an Rh Neg woman with an Rh Pos man
 - 5,000 10,000 babies died/year in USA (educated estimates)
 - "Once it occurred, all who followed would die..."

* "Childbearing for parents, became a highly predictable recurring tragedy"


xcerpts from Rh – The Intimate History of a Disease & Its Conquest BLOODCENTER



Rh Protein

- Only present on RBCs
- 417 amino acids
- Differ from RhCE by 31-35 amino acids
 Dependant on *RHCE* allele
- ~9,900 33,000 antigen sites/RBC (dependant on Rh phenotype)

Immune Response to RhD

- · Antigen processed to immunogenic peptides by Antigen Presenting Cells (APCs) - dendritric cells
 - Peptides are loaded on MHC Class II molecules & presented to Helper T cells with receptors for the processed H peptides
- · B cell receptors are activated & produce anti-D BLOODCENTER

SJ Urbaniak, Transfusion clinique et biologique 13(2006) 19-22

Immune Response to RhD

- 1st exposure slow, up to 4 weeks
 - Short primary IgM response
- · Memory lasts for years after immunizing event
- Response on re-stimulation
 - Strong IgG, often within 24 hrs
 - Peaks quickly (~ 6 days)

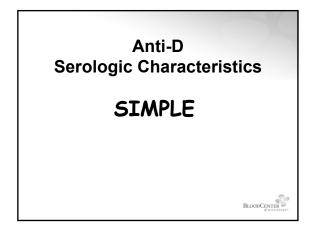
BLOODCENTER of WISCONSIN-

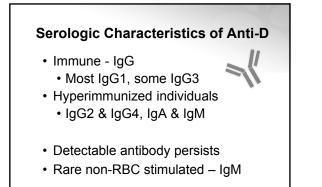
Ve	olur	Respons nteer Stu	dies	
Reference	No.	Rh Phenotype	Dose (ml)	Detectable Anti-D after 1 st stimulus
Mollison (1969, 1970)	10	R₁r	1.0	10%
Woodrow (1975)	31	R₁r	1.0	23%
Samson & Mollison (1975)	12	R ₁ R ₂	1.0	42%
Pollack (1971)	22	R₁r	500	82%
Gunson (1976)	43	R_2R_2	0.5-5.0	79%
50-80% of RhD- people giv	' ∕en <u>≥</u> 1 ι	unit of RhD+ blood	d make anti-l	BLOODCENTER of WINCONSIN

Immunogenicity of RhD Patient Studies

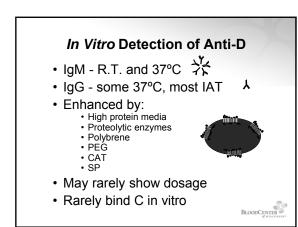
- 21-22% of RhD- patients given ≥1 unit of RhD+ blood make anti-D
 - Frohn et. al., Transfusion 2003;43:893–898
 - Predicted incidence 30.44%
 - Raw Data 21%
 - Yazer et. al., Transfusion 2007;47:2197-2201
 - Raw Data 22%

BLOODCENTER of WISCONSIN*


BLOODCENTER of WISCONSIN


Anti-D alloimmunization after D-incompatible platelet transfusions

KL O'Brien, RL. Haspel, L Uhl Transfusion 2014;54:650-654.


- 14 year retrospective study
- 626 D- patients rec'd 2,770 D+ prestorage leukoreduced apheresis PLT transfusions (contain < 0.001 mL of RBCs)
 - 50 rec'd D+ RBCs & 28% made anti-D
 - 130 evaluable patients rec'd 565 SDP

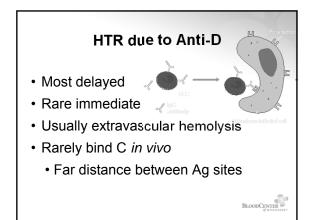
No Anti-D!! No need for RhIG

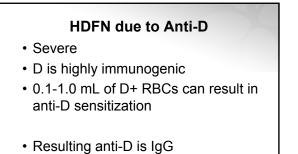
BLOODCENTER

Case History

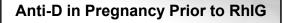
- 22 y/o pregnant female
- High Risk patient MCA doppler¹
- History of Anti-D, -C, -Jka

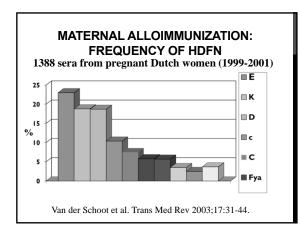
	rward Typ	be	R	everse Typ	e
Anti-A	Anti-B	Anti-D	A1 cells	A2 Cells	B cells
4	0	0	1	0	4


	D	С	E	с	е	к	Fya	Fy⁵	Jka	Jk ^b	S	s	IS	37C	IAT
1	+	0	+	+	0	0	+	0	0	+	0	+	1	1	4
2	+	0	0	+	+	0	0	+	0	+	+	+	w	w	4
3	0	+	0	+	+	0	0	+	+	0	+	+	0	0	3
4	0	+	0	+	+	0	0	+	0	+	0	+	0	0	3
5	0	0	0	+	+	0	+	+	+	0	+	0	0	0	0\
6	0	0	0	+	+	+	0	+	+	0	+	+	0	0	0\
A	uto												0	0	0√

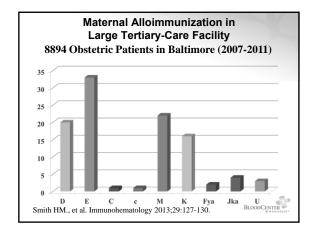


[Forward Ty			esoluti		
	Anti-A	Anti-B	Anti-D	A1 cells	A2 Cells	B cells	
	4	0	0	1	0	4	
		Anti-D	Anti-C	Anti-E	Anti-c	Anti-e	
A1	Cells	4	0	3	4	0	
A2	2 Cells	4	3	0	4	4	



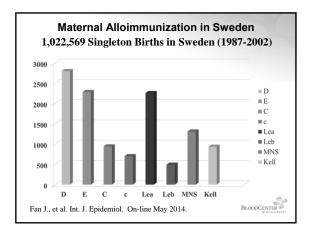

 RhD protein present on fetal RBCs by 6 weeks gestation

8

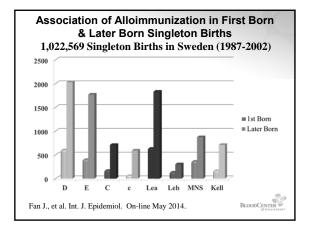


- **16%** RhD negative, **ABO compatible** women make anti-D
- <2% RhD negative, ABO incompatible women make anti-D

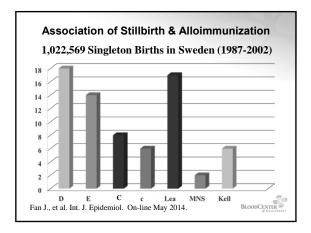
BLOODCENTER Of WILCONSIN*



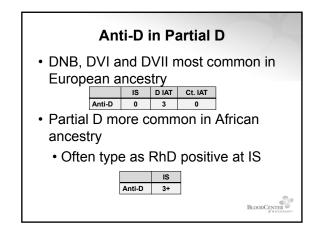
- 5 infants required antigen negative units within 24 hours of birth
- 8 women required IUT
- Anti-D was implicated in 7 of 8 cases

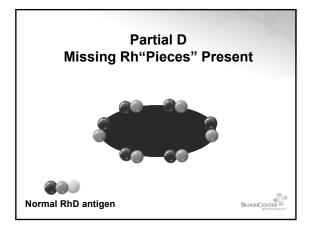

BLOODCENTER Of WILCONSIN*

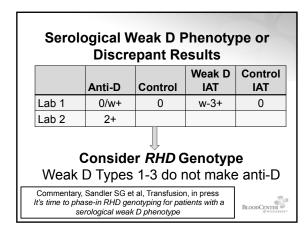
 Nearly all cases of HDFN had anti-D + other antibodies


Smith HM., et al. Immunohematology 2013;29:127-130.

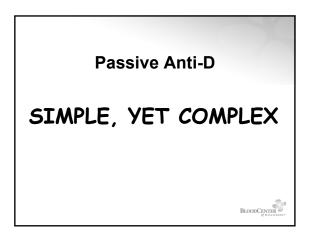








Serological Weak D Phenotype Definition


 Anti-D reagent agglutinates RBCs weakly (≤ 2+) or not at all by test tube method at IS, but agglutinates moderate to strongly (2-4+) when IAT is performed

> BLOODCENTER of WISCONSIN*

Rh Immune Globulin (RhIG)

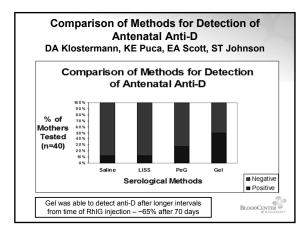
- Anti-D
 - 300ug (1,500 IU) & 50 ug doses

BLOODCENTER Of WISCONSIN*

- Rhogam[®]
- Rhophylac[®]
- HyperRHO®
- WinRHO®

			Rh				M	٧S		P1	Lev	wis	ĸ	EL	Dut	ffy	Ki	dd	
	D	с	Е	с	е	м	Ν	s	s	P1	Lea	Le ^b	к	k	Fya	Fyb	Jka	JkÞ	IAT
1	+	+	0	0	+	+	+	+	0	+	0	+	+	+	+	+	+	0	2
2	+	0	+	+	0	0	+	0	+	0	+	0	0	+	+	0	0	+	2
3	0	0	0	+	+	+	0	+	+	+	0	+	0	+	0	+	+	+	0
		•	•	• (С	olu	-	nn	A		ecti glut	-	tio	n	Tes	stin	g		

Passive Anti-D Detection


- ~10% of antenatal dose is present in mom at 40 weeks delivery
 - $\frac{1}{2}$ life of IgG is 25 days
- Factors influencing detection
 - Method used
 - Mom's BMI
 - Amount of FMH

BLOODCENTER

Comparison of Methods for Detection of Antenatal Anti-D

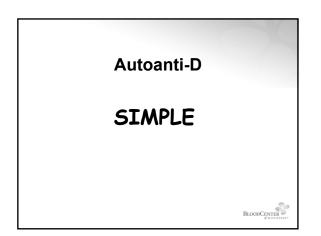
- DA Klostermann, KE Puca, EA Scott, ST Johnson, Transfusion, Suppl. 2008
- D-negative mothers at delivery interviewed, those who met these criteria were consented:
 - Received 300 µg RhIG between 26 and 30 weeks gestation
 - no antibody detected on initial prenatal testing
 - singleton pregnancy
 - no complications during pregnancy
 - no additional doses of RhIG received

BLOODCENTER of WISCONSIN*

			KE Puca tection Re				
G	ain in TPV		Ant	i-D Detect	tion Meth	od	
	(ml)	n	Saline n (%)	LISS n (%)	PeG® n (%)	Gel n (%)	
1	00-199	1	1 (100%)	1 (100%)	1 (100%)	1 (100%)	
2	00-299	20	3 (15%)	4 (20%)	8 (40%)	12 (60%)	
3	00-399	16	1 (16%)	0	2 (13%)	7 (44%)	
4	00-441	3	0	0	0	0	
Т	otal	40	5 (13%)	5 (13%)	11 (28%)	20 (50%)	

Sensitivity of Common RBC Antibody Detection Methods in Detecting Rh-Immunoglobulin

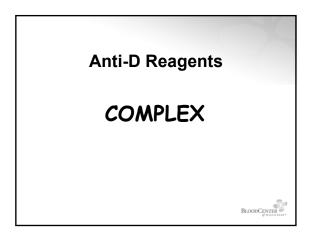
Mikesell KV et al, Transfusion, Suppl. 2014, SP276


- Spiked pooled plasma with 50ng/ml of Rhogam[®], Rhophylac[®], HyperRHO[®], WinRHO[®]
- Serial 2-fold dilutions
- Tested Echo®, Galileo®, Gel Test, PEG tube
- Echo® detected 5 dilutions (1.57ng/ml)
- Galileo® detected all 6 dilutions*
- Gel & PEG detected 3 or 4 dilutions (3.13 – 6.25ng/ml)

BLOODCENTER of WISCONSIN*

Passive Anti-D Detection AABB Technical Manual, 18th ed. 2014

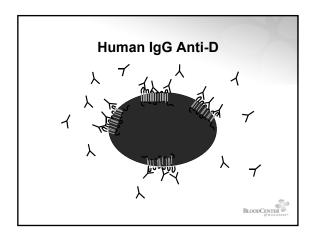
- Titer is rarely >4
- RhIG is completely IgG
- Newly forming anti-D may have IgM component
- Issit suggested waiting 6 months


Antibody titration at birth is not a reliable indicator of passive vs. immune anti-D

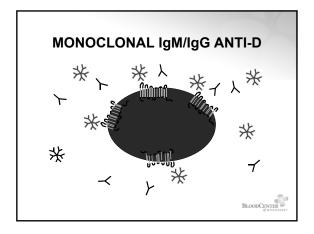
Autoanti-D

- Benign autoanti-D preceding alloanti-D
 - Immunized Patient
 - Reimmunized Individual
- Warm Autoimmune Hemolytic Anemia
 Rare

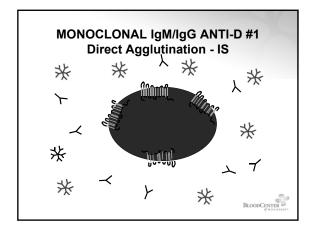
BLOODCENTER of WISCONSIN*

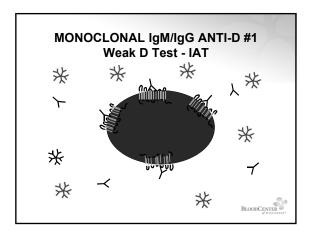


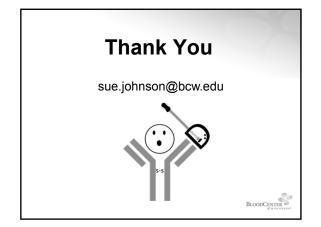
	A	nti-D
Reagent	IgM	IgG
Gamma-Clone	GAMA401	F8D8
Immucor-4	MS201	MS26
Immucor-5	TH28	MS26
Ortho Bioclone Tube	MAD2	Human polyclonal
Biotest (Bio-Rad) - Blend	BS232	BS221 H41 11B7
Biotest (Bio-Rad)	BS226	
Quotient – Alpha	LDM1	
Quotient – Beta	LDM3	
Quotient – Delta	LDM1 ESD-M	
Quotient – Blend	LDM3	EDS1

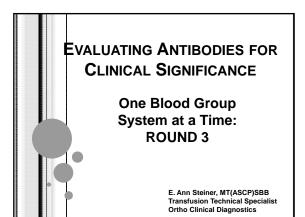

-
 _

		Anti-	D
Anti-D	Method	lgM	lgG
Immucor – Series 4	Galileo Echo®/Neo®	MS201	MS26
Immucor- Series 5	Galileo Echo®/Neo®	TH28	MS26
Ortho	Gel/Provue®	MS201	
Diagast PK1	PK7200 [®] /PK7300 [®]	P3X61	
Diagast PK2	PK7200®/PK7300®	HM10	
Diagast	PK7200®/PK7300®	P3X61	P3X290
(Monoclonal Blend)		P3X21223B10	P3X35
Erytype® S	Tango®	BS226	
Erytype	Tango®	BS232	
Erytype (Blend)	Tango®	BS221	H411B7
Grifols	DG Gel/Erytra®	P3x61	









Objectives

- Describe the immunologic response to RhD protein
- Compare & contrast *in-vivo* and *in-vitro* characteristics of alloanti-D, passive anti-D and autoanti-D
 - Discuss the clinical significance of anti-D in transfusion and pregnancy
- Discuss anti-D in Partial D individuals

BLOODCENTER

Disclaimer Information:

I am an employee of Ortho Clinical Diagnostics

I have no conflict of interest in regards to the content of this presentation

AABB 2012

What Makes an Antibody Clinically Significant? George Garratty, PhD, FRCPath

Clinical Decision Making: Red Blood Cell Alloantibodies Beth Shaz, MD

CLINICALLY SIGNIFICANT ALLO-ANTIBODIES

o In Vivo

- Predict what could occur
- Analyze what is occurring
- o In Vitro
 - Pre-transfusion testing antibody screen, XM, ID panel, et. al.
 - Diagnostic studies DAT, eluate, et. al.

CLINICALLY SIGNIFICANT ALLO-ANTIBODIES

PreTx to predict what could occur *In Vivo* o Transfusion reaction:

- Severe: morbidity/mortality, effects on heart, renal, coagulation system, etc.
- Moderate: anemia, lethargy, additional transfusions
- Mild: lab findings only: bili, hgb, etc.?
- No reaction immunized at next TS

CLINICALLY SIGNIFICANT ALLO-ANTIBODIES

Definition:

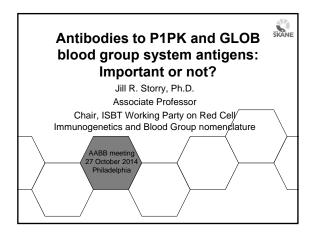
- o Allo: does not react with autologous rbc's
- o Clinical: In vivo reactivity
- Significant: Deleterious affect on the patient
 - Varies with patient's underlying condition
 - Could be primary or secondary to rbc
 - destruction, e.g., anemia vs. renal/coagulation
 - Could be immunized and at high(er) future risk
 Could be indirect: missed diagnosis, delay to
 - scheduled surgery, increased cost of medical care

PATHOGENESIS REVIEW

Characteristics of antibody that affect *in vivo* behavior, i.e., severe reaction vs. no reaction:

- Ability to activate complement; type of complement present on RBCs
- o Quantity of RBC-bound IgG/complement
- \circ Characteristics and quantity of target RBC antigen(s)
- $\ensuremath{\circ}$ Temperature of reactivity vs temperature of patient
- $\ensuremath{\circ}$ lmmunoglobulin class and subclass of IgG
- o Individual patient factors, e.g., immune system function (meds, diagnosis, age), inflammation, etc.

CHARACTERISTICS OF PATHOGENESIS APPLIED TO IN VITRO TESTING


o Activate Complement: Fresh serum and Poly AHG

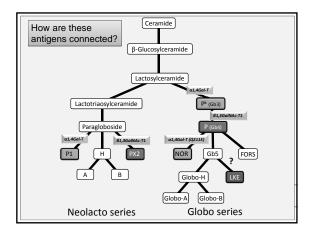
- o Quantity bound IgG/Complement: Sensitivity
- Time; temperature; enhancements; IAT; reactant ratio
- o Target RBC Antigen's:
 - Phenotype of screening cells
 - Age, storage, dosage, etc. of screening cells
- o Subclass of IgG
- o Individual patient factors, e.g., immune system function (meds, diagnosis, age), reason for anemia/transfusion, etc.

AABB 2012

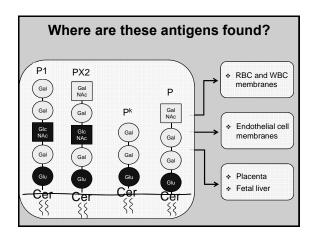
Accessing these presentations:

- o AABB Live Learning Center
- Not in attendance:
 - Nominal fee required

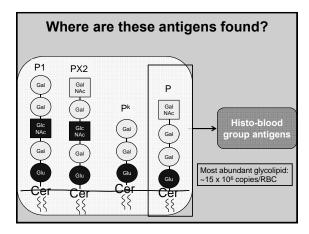
P1PK and C		anugens
Classification	Antigen	ISBT number
P1PK system (003)	P1	003001
	P ^k	003003
	NOR	003004
GLOB system (028)	P	028001
	PX2	028002
GLOB collection (209)	LKE	209003



P1PK and (GLOB a	antigens	
Classification	Antigen	ISBT number	
P1PK system (003)	P1	003001	
	P ^k	003003	
	NOR	003004	
GLOB system (028)	Р	028001	
	PX2	028002	
GLOB collection (209)	LKE	209003	
			-(



P1PK and GLOB antigens						
Classification	Antigen	ISBT number				
P1PK system (003)	P1	003001				
	P ^k	003003				
	NOR	003004				
GLOB system (028)	Р	028001				
	PX2	028002				
GLOB collection (209)	LKE	209003				
			P1PK/G Antibor 27 Octobr Philade			



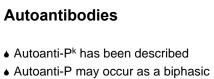
Why are the P1PK/GLOB blood groups and their null phenotypes interesting?

- Involved in a number of medical conditions
 - 5th (childhood) disease
 - Urinary tract infections
 - Intravascular haemolysis due to Donath-Landsteiner antibodies
 - Recurrent spontaneous abortion
- Involved in pathogenesis of many microorganisms
 Parvovirus B19, HIV

Parvovirus B19, HIV
 Some P-fimbriated E.coli

- Verotoxins (shiga-like toxins)
- Important in transfusion medicine
 Hemolytic transfusion reactions
 - HDN (?)

BI	Blood group serology						
Phenotype	Prevalence	Antigens	Antibodies				
P ₁	~80%	P1 P (P ^k , PX2)	<u></u>				
P ₂	~20%	P (P ^k , PX2)	Lanti-P1				
P1 ^k	1-5:10 ⁶	P1 P ^k	anti-P, PX2				
P ₂ ^k	1-5:10 ⁶	P ^k	anti-P1, P, PX2				
р	1-5:10 ⁶	-	anti-P, P1, P ^k				
LKE	98%	LKE	-				
23	Naturally occ	uring" antibodi	es Produce				


What stimulates the naturally occuring antibodies?

- Gut bacterial flora have similar sugar structures
- Antibodies are produced to environmental microorganisms (like anti-A and anti-B)
- Defence mechanism?

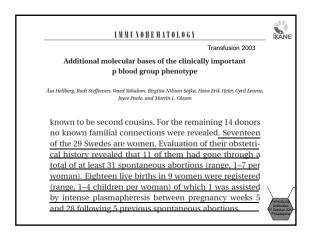
SKANE

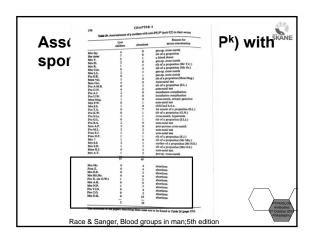
Anti	body	r cha	racte	ristic	s	SKANE
Antibody	Antibody class	Preferred temp.	Bind C'	HTR	HDFN	Spontaneous abortion
anti-P1	lgM	RT	Rare	No (Rare)	No	No
Anti-NOR*	lgM	RT	No	ND	ND	No
anti-P	lgM & lgG	RT→37C	Yes	Yes	No to mild	Yes
anti-P, P1, Pk	lgM & lgG	RT→37C	Yes	Yes	No to mild	Yes
Anti-PX2	lgM & lgG	RT→37C	ND	ND	ND	ND
Anti-LKE	lgM & lgG	RT→37C	Yes	Yes (Rare)	No	No
ND = r	io data; '	* polyagg	lutinin			PIPK/GLO Arithodies 27 October 2019 Philadephia

- Autoanti-P may occur as a biphasic hemolysin in PCH following viral infections in young children
 - Detected by the Donath-Landsteiner test

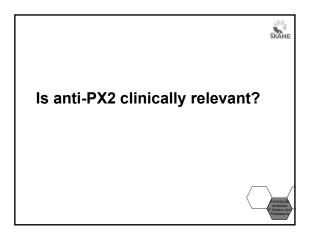
Other useful serological tips

- All antibodies are greatly enhanced by treatement of tests RBCs with proteases
- Anti-P1 can be neutralised with P1 substance, isolated from pigeon egg-white or hydatid cyst fluid
 - Very specific


SKANE


SKANE

Association of anti-P(P1P^k) with spontaneous abortion


"Cytotoxic IgM and IgG3 antibodies directed against P and/or Pk antigens are associated with a higher than normal rate of spontaneous abortion in women with the rare p [Tj(a-)], P1k, and P2k phenotypes."

The Blood Group Antigen Factsbook, 3rd edition.

Description of index case

- Blood group phenotype
 Patient is A₁B but has globoside deficiency of P₁^k phenotype.
 Found to be homozygous for 811G>A
- (Hellberg *et al.*, J. Biol. Chem., 2002).Known antibodies in plasma
- As expected a strongly reactive, naturally-occurring anti-P

 Diseases
- Dialysis since long time. Now also diagnosed with cancer. Palliative transfusions ordered by clinicians.

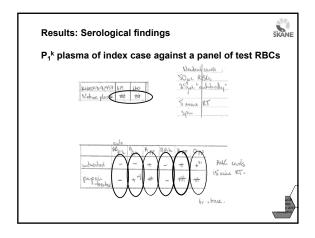
SKANE

Description of index case

Transfusion history

• Previously given several units of group B blood of p phenotype.

SKANE

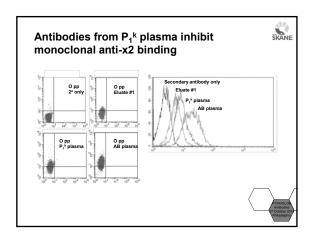

- Crossmatch initially negative and blood received apparently uneventfully.
- Another two units requested but now crossmatch positive.
- Common alloantibodies against known
 polymorphic antigens ruled out.

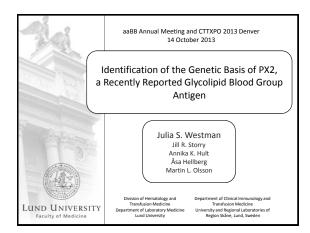
Materials and Methods

- Samples
 - Blood from 8 P^k individuals (7 P₁^k and one P₂^k) of various geographic/ethnic origins.
 - Investigated in the reference laboratories in Paris or Lund.
 Mutations in their B3GALNT1 genes confirmed phenotype (Lund)
 - Native and papain-treated test RBCs of multiple donors with the p phenotype and various ABO groups
 - Test RBCs of Bombay phenotype

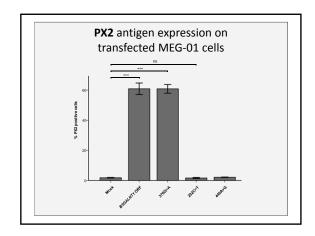
Methods

- Various serological routine assays (gelcards fromDiaMed)
- Flow cytometry including competitive inhibition and anti-(clone TH2)
- Thin layer chromatography and ELISA for glycolipid analysis

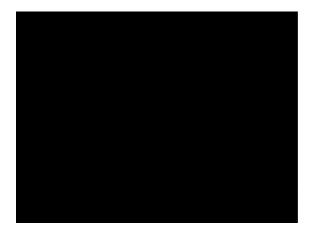

	Step 1: Adsorbing I random gro			o a poo	ol of	A.	1	1	A.	all is	18.
	Purpose: To	o adsor	o out hi	s anti-l	P.	9	U.	5	0	¥	4
1				/		lgG	IgA	lgM		C3d	ctl
	Grup	op O,	P+				B	PP V			ALL DURING
	3	DAT	and ;	SOUC 1	He m. on H - (3)	ev- ta	er did		_	_	
4 A	I reactions were P-	P+	P-	P+	P-	P-	P+	P-	P	F	-
	b / RBC AB P1 ^k (auto)	AB	A P ₁ ^k	A	Ap	B P ₁ ^x	В	Bp	0	0	P
	BC origin European (RW)	random	Israeli V	random	Sweden (JN) √	Arabic (AA)√	random	1321909		LTU	19
	IGALT - utation IGALNTI 811G>A	nt nt	S¥es*	nt. nt.	548T>A	- 537_8insA	nt. nt.	Yes*	nt.	548	
BJ	utation		537.5,004		<u> </u>			N			

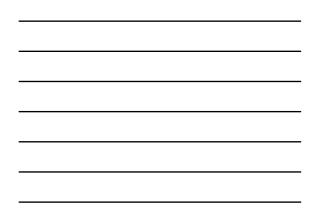

Hemagglutination tests: Extended testing against p RBCs										
P ₁ ^k plasm	a number	1	2	3	4	5	6	7	8	
ABO p	henotype	0	A	AB	В	0	A	А	А	
P ^k p	henotype	P_1^k	P_1^k	P1 ^k	P2 ^k	P_1^k	P1 ^k	$P_1^{\ k}$	P_1^k	
		Reactivity with p RBCs								
Untreated	20°C (n)	0 (1)	4+ (2)	2-3+ (3)	0/1+(2)	not tested				
Papain- treated	37°C (n) 20°C (n) 4°C (n)	4+ (1)	3+ (2)	2-4+ (3)	0/3+ (2)	0 (6) 1+ (4)	1+ (4) 1+ (5)	H (6) 2+ (6)	1+ (4) 3+(20)	
treated Conclu	p RBC sam Ision: All F	ples at d k indivi	ifferent t duals te	emperatu sted had	ed against u res. antibodies after strengtl	reactiv	e with p		-	

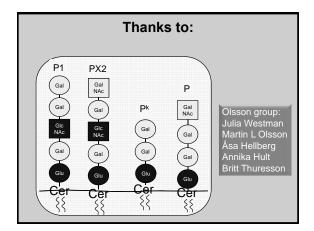
Can antibodies from P₁^k plasma inhibit keen monoclonal anti-x2 binding?


- Aim: To see if P₁^k plasma or eluate could block the binding of MAb anti-x2
- Therefore, group O pp RBCs were pre-incubated with either P₁^k plasma or an eluate containing the additional antibody specificity.
- Pooled AB plasma was used as a control for unspecific inhibition.
- Following this incubation, the RBCs were washed and then labelled with MAb anti-x2 (TH2) and finally PE-labelled rate anti-mouse Ig kappa as secondary antibody.

Conclusions


- These data indicate that the weak/variable crossmatch reactivity observed in tests of Pk plasma with p RBCs is due to the occurrence of a naturally-occurring antibody to an antigen found in elevated amounts on p RBCs.
- x2 glycolipid is known to be elevated on p RBCs
- The index case appears to have boosted antibodies against p RBCs following transfusion


Conclusions


- These data show that B3GALNT1 encodes the glycosyltransferase responsible for PX2 antigen synthesis
 - . The enzyme is able to add $\beta 1,3GaINAc$ onto both paragloboside (PX2) and P^k(P)
 - Naturally-occurring globoside-deficient mutants with ${\rm P_1}^k$ or ${\rm P_2}^k$ phenotype lack both P and PX2 antigens on the surface of RBCs All P₁^k and P₂^k individuals tested made both anti-P and anti-PX2
- P₁^k or P₂^k RBC units should be selected for transfusion to P^k patients

 - p RBCs are typically incompatible with P^k plasma
 even if the clinical significance for anti-PX2 is not yet known, p RBCs may pose a risk due to their high PX2 level

Blood group system	P1PK	-	GLOB
Collection	-	GLOB	-
ISBT number	003	209	028
Antigens	P1, Pk	LKE	Р
Null phenotype	р	LKE neg	P1 ^k , P2 ^k
Antibodies related to the null phenotype	Anti-P ^k Anti-P1 Anti-P	Anti-LKE	Anti-P (Anti-P1)
Enzyme	α4GalT	α2SialyIT	β3GalNacT1
Gene	A4GALT	?	B3GALNT1
Chromosome	22	?	3
Exons	4	?	5?

