

RENAL FUNCTION TEST

PRESENTED BY : LECHUMY MUTHUSAMY (102312)

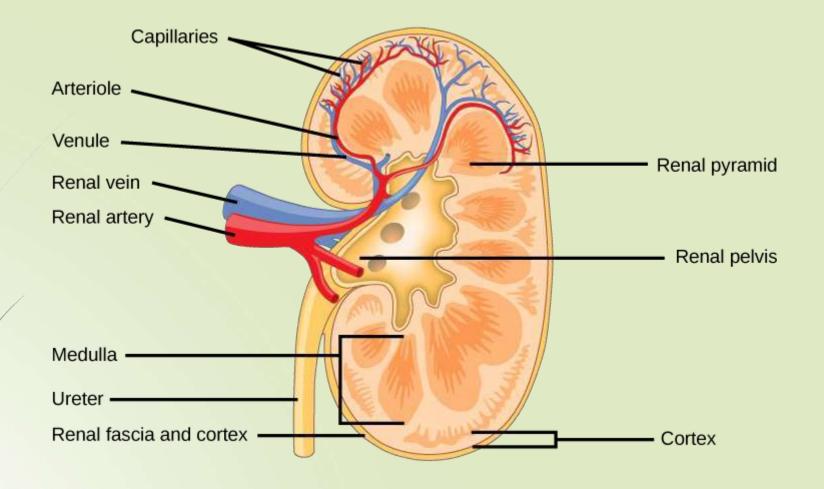


Figure 1. The internal structure of the kidney is shown. (credit: modification of work by NCI)

- Externally, the kidneys are surrounded by three layers:
 - a. Renal fascia
 - b. Perirenal fat capsule
 - c. Renal capsule
- Internally, the kidney has three regions:
 - a. An outer cortex
 - b. A medulla in the middle
 - c. Renal pelvis in the region called the hilum of the kidney
- Hilum is the concave part of the bean-shape where blood vessels and nerves enter and exit the kidney.
- Renal cortex is granular due to the presence of nephrons—the functional unit of the kidney.

Objectives

- Enumerate the functions of kidney
- Discuss the biochemical test which are done to assess the function of kidney
- Discuss the abnormalities in biochemical tests associated with renal impairment

Kidney Functions

- Excretory
- Homeostatic
- Endocrine
- Metabolic

Renal Function

- I. Excretory Functions
 - Formation and excretion of urine
 - ✓ Glomerular filtration
 - ✓ Tubular reabsorption
 - ✓ Tubular secretion
 - Excreting toxic substances in synergy with liver
- II. Homeostatic function
 - Regulation of blood volume
 - Regulation of blood pH
 - Regulation of serum electrolytes; Na, K, Cl and Ca
 - Reabsorption of essential nutrients

Renal Function

- III. Endocrine function
 - Erythropoietin
 - Renin Angiotensin system
 - Vitamin D activation
 - Degradation of hormones like insulin and aldosterone
- V. Metabolic function
 - Along with liver site for gluconeogenesis

Renal function tests; Why needed?

- To assess functional capacity of kidneys
- To diagnose renal impairment
- To assess the severity and progression of renal impairment
- To assess the effectiveness of treatment

Causes of renal disease

- 1. Pre-renal
 - a. Any condition that results in reduced blood flow to kidneys
 - Severe blood loss
 - o Hemolysis
- 2. Renal
 - a. Damage to renal tissue, glomerular basement membrane or tubules
 - o Glomerulonephritis
 - Diabetic or hypertensive nephropathy
 - Tubular damage due to toxic substances
- 3. Post Renal
 - a. Obstruction to urine outflow
 - o Ureteric or urethral stone
 - Prostatic cancer

Renal function test

Can be divided into:

- 1. Test for glomerular function
 - a. Serum Urea
 - b. Serum Creatinine
 - c. Clearance tests
- 2. Tests for tubular function
 - a. Urine concentration test
 - b. Dilution test
 - c. Para amino hippuric acid clearance test
 - d. Acidification test
- 3. Urine examination
 - a. Important for assessing both glomerular and tubular function

Renal function test

The following parameters are commonly included in assessing renal function:

- Serum Urea
- Serum Creatinine
- Serum Uric acid
- Total protein
- Serum albumin
- Serum electrolytes
 - i. Sodium (Na)
 - ii. Potassium (K)
 - iii. Chloride (Cl)
 - iv. Phosphate (PO4)
 - v. Calcium (Ca)

Renal Function Tests

- Complete hemogram
 - i. Hemoglobin
 - ii. Total RBC
 - iii. RBC indices
 - ≻ MCH
 - ≻ MCV
 - > MCHC
 - ≻ PCV
 - ≻ RDW
 - iv. ESR

Routine urine examination

- 1. Physical appearance
 - Colour
 - pH
 - Specific gravity
- 2. Analytes
 - Protein
 - Glucose
 - Ketones
 - Bilirubin
 - Urobilinogen
 - Leucocyte
 - Nitrite

- **3.** Microscopy
 - RBC
 - Pus cells
 - Epithelial cells
 - Casts
 - Crystals
- 4. 24 hour urine protein
- 5. Albumin/creatinine ratio (ACR)

Clearance test

- Clearance of substance is defined as the volume of plasma that is cleared of that substance in unit time.
- Inulin clearance accurately measures GFR as it is neither secreted or absorbed by the renal tubules.
- However it is not routinely done in patients.
- In clinical setting estimated GFR (eGFR) is more commonly used; it is calculated from serum creatinine value.

Estimated GFR

- The Cockcroft-Gault formula for estimating creatinine clearance (CrCl) is routinely as a simple means to provide a reliable approximation of residual renal function in all patients with CKD. The formulas are as follows:
- CrCl (male) = ([140-age] × weight in kg)/(serum creatinine × 72)
- However this has been extensively modified and there are online calculators of eGFR from serum creatinine and body weight of patients.
- The eGFR is used to determine the stage of chronic kidney disease.

Changes in serum analytes in kidney disease

- 1. Serum Urea and creatinine
 - They both are increased in renal disease.
 - Urea increases more in glomerular disease as compared to creatinine.
 - Urea is a less reliable indicator than creatinine as it is affected by many factors such as;
 - a. Protein intake
 - b. Dehydration
 - c. Muscle breakdown
- 2. Serum Uric acid
 - It may increase in chronic kidney disease but not sufficient to cause gout.
 - However raised uric acid is a bad prognostic indicator for chronic renal disease.

Changes in serum analytes in kidney disease

- 3. Total protein and albumin
 - Both serum total protein and albumin is decreased in chronic kidney disease (CKD) due to increased proteinuria.
 - Even though proteinuria may also be seen in acute kidney disease but it usually does not alter the total protein and albumin.
- 4. Serum electrolytes
 - Sodium is decreased (hyponatremia) and potassium is increased (hyperkalemia) in chronic kidney disease (CKD) as kidney reabsorb sodium in exchange of potassium.
 - Chloride and phosphate is increased in CKD.
 - Calcium is decreased as vitamin D is deficient.

Changes in hemogram and urine analysis in kidney disease

- RBC count and hemoglobin is decreased in advanced stages of kidney disease due to deficiency of erythropoietin.
- Urine examination reveals:
 - i. Proteinuria is seen in both acute and chronic kidney disease as well as kidney infection.
 - ii. Proteinuria can be of two types:
 - In the initial stages very less amount of albumin escapes into urine; microalbuminuria (30 to 300 mg/day)
 - Frank proteinuria (when it is greater than 300 mg/day)
 - ✓ Best evaluated in 24 hour urine sample
 - In spot urine albumin/ creatinine ratio is used to evaluate proteinuria

Changes in hemogram and urine analysis in kidney disease

- i. Presence of RBC may indicate glomerulonephritis, acute nephritis, kidney infection.
- ii. Presence of pus cells, esterase positivity, nitrites may indicate bacterial infection.

Tests for tubular function

. Urine concentration test

- In CKD kidneys loses the ability to concentrate urine.
- Specific gravity is measured in urine.
- Low fixed specific gravity is indicative of chronic kidney disease.
- II. Dilution test
 - After overnight water deprivation patient is asked to take 1200ml of water in half hour, urine specific gravity is measured in samples collected over next 4 hours. At least one sample should show sp gr of 1.003 or below

Tests for tubular function

III. Para amino hippuric acid clearance test

- PAH is unique in that it is completely excreted in one passage through kidney as it is both filtered and secreted.
- Therefore clearance of PAH is a measure of renal plasma flow.
- IV. Acidification test
 - In this the ability to acidify urine is tested after administering 0.1g/kg ammonium chloride gelatin coated samples.

