Irradiation and Radiation Safety

IUH AHC Blood Bank
JKS

Reviewed and posted February 2024

Why do we irradiate blood?

To prevent transfusionassociated Graft-Versus-Host-Disease (GVHD)

What is GVHD?

GVHD is a transfusion-associated complication that occurs when:

- Immunocompetent cells are present in the transfused component
- There is incompatibility (via histocompatibility)
 between the donor and recipient

Manifestations of GVHD

- Fever
- Skin rash
- Loss of appetite
- Nausea
- Vomiting

- Diarrhea
- Hepatitis
- Bone marrow suppression
- Death

Patients at risk for GVHD

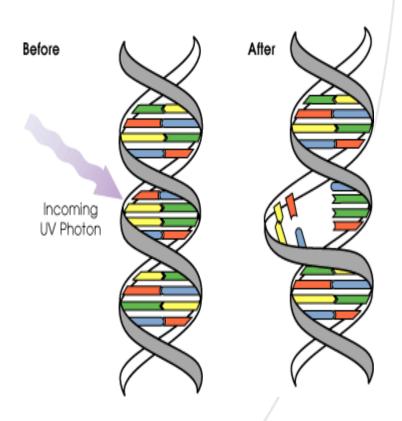
- Immunocompromised individuals:
 - ■Bone marrow transplant patients
 - Chemotherapy patients
 - Radiation therapy patients
 - ■Fetuses and newborns
 - Heart, lung and liver transplant patients
- Non-immunocompromised individuals:
 - Recipients with same haplotype as the donor (genetically similar)
 - Blood relatives of the donor

Treatment of GVHD

- Treatment of acute onset GVHD is usually unsuccessful
- Patients with chronic GVHD may respond to immunosuppressive regimens including steroids and alkylating agents
- Because therapies have mostly been unsuccessful, prevention is paramount

How is GVHD prevented?

Graft-Versus-Host-Disease is prevented by *irradiating blood* and platelets for all recipients who either are immunocompromised or who are blood relatives of the donor.



What happens when blood is irradiated?

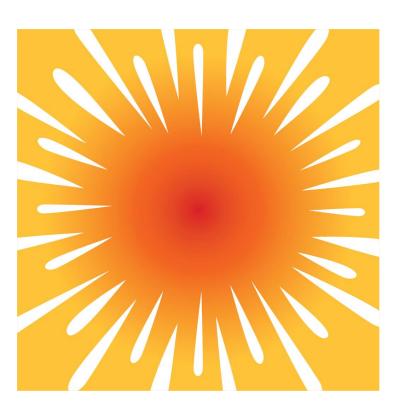
When cellular blood components are irradiated, they are exposed to 25Gy of radiation:

- A sufficient dose of radiation to damage the DNA of the donor lymphocytes
- Rendering the lymphocytes incapable of replication, without affecting the function of red cells, platelets or granulocytes.

Effect on other blood cells

- Red Blood Cells:
 - Intracellular potassium loss
 - •Increased free Hgb levels in supernatant
 - Cell viability shortened (28 days max)
- Platelets:
 - No qualitative or quantitative changes up for doses up to 50 Gy

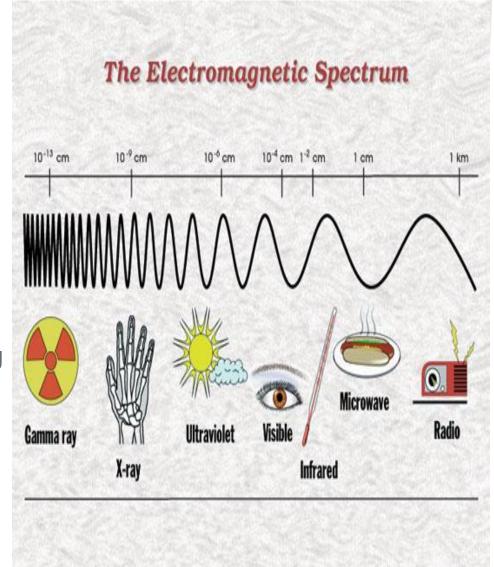
Radiation Safety



What is radiation?

Radiation is the process by which energy is emitted or propagated in the form of rays, waves or particles.

Forms of radiation



- Sunrays (Ultraviolet)
- Heat (Infrared)
- Visible light
- Microwaves (cooking; communication)
- Radio waves (radio and television)
- Background radiation (geologic or cosmic in origin)
- Nuclear radiation (x-rays used in medicine)

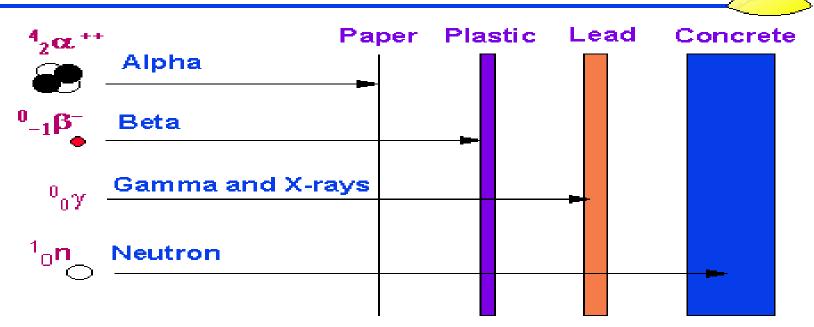
Radiation

- Radiant energy is energy traveling in a wave motion
- Electromagnetic radiation is measured in wavelengths
- Radiation is the process of emitting radiant energy
- There are two types of radiant energy:
 - Ionizing
 - Non-ionizing

Types of radiation

Non-ionizing radiation

- Type of energy that when striking an object, it causes vibration leading to friction and therefore heat but not enough movement to remove tightly bound electrons from their orbit
 - Example: ordinary white light


lonizing radiation

- When an atom is exposed to ionizing radiation there is enough energy to remove electrons from their orbits causing the atom to become charged or ionized
- Examples: photons (x-rays, gamma rays), alpha and beta particles, neutrons

Radiation penetration

Penetrating Distances

lonizing radiation

Gamma Rays:

- A photon, similar to ordinary visible light but shorter in wavelength than ultraviolet light, hence the higher energy level
- Produced following spontaneous decay of cobalt-60 or cesium-137 (the CIS-US IBL 437 Irradiator utilizes cesium-137 as its radioactive material)
- Can travel unimpeded for great distances
- Can easily go right through people but can be blocked by lead

lonizing radiation

X-rays:

- X-rays are a photon, and has similar characteristics to gamma rays
- When high speed electrons hit metals such as tungsten, electrons are deflected and release energy in the form of electromagnetic waves (x-rays)
- As with gamma rays, X-rays
 - Have high penetration (depending on energy level)
 - Can easily go right through people but can be blocked by lead

Limiting Radiation Exposure

The three variables to keep in mind are:

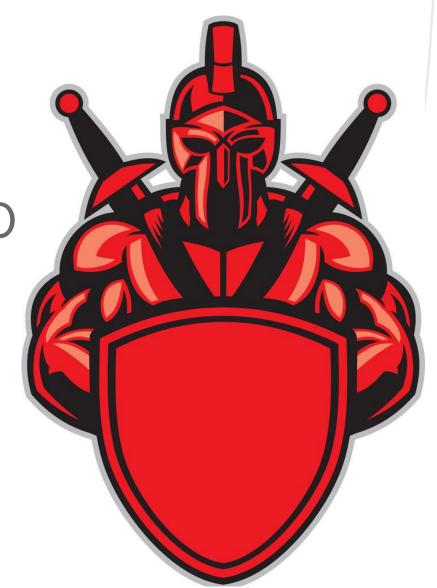
Time
Distance
Shielding

Measuring Radiation

As part of quality control and safety procedures, it is necessary to monitor the function, efficacy and safety of the irradiator.

Radiation measurement devices include:

- Rad-sure labels (indicator changes when exposed to adequate dose of radiation)
- Survey meters (Geiger counter)
- Dosimeters (Film badges are not required)



Summary

Irradiation for

Prevention of GVHD

Radiation Safety

